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Abstract

We present a shear-lag stress analysis methodology which accounts for both matrix strain-hardening plasticity and
interfacial slip in a single fiber metal matrix composite (MMC) subjected to uniaxial tensile loading and unloading
along the fiber direction. The fiber may either be broken or intact. Among other things, the model predicts residual
stress and strain distribution after a cycle in the fiber and matrix. The development of the model is motivated by the
recent measurement by Hanan et al. [Mater. Sci. Eng. A, in press], of elastic strain evolution with loading in each phase
of an Al,0;/Al composite using neutron diffraction. The model also estimates two crucial in situ material parameters
using these measurements, which cannot be obtained from bulk tests: the frictional threshold of the interface, and the in
situ yield point of the matrix. With these parameters, the predicted elastic strain evolution with loading is in excellent
agreement with the experimental data.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Shear-lag models are often used for fast computational stress analysis of large unidirectional fiber-
reinforced composites with partial damage. The superior computational efficiency of these models relative
to e.g., three-dimensional finite element analysis, stems in part from the simplifying assumption of one-
dimensional displacement and stress fields. Shear-lag models do not provide detailed information about the
spatial variations of stresses and displacement within the composite. Nevertheless, they capture the average
stress field over fiber and matrix cross-sections accurately enough for purposes of material failure
predictions. An application where shear-lag stress analysis is preferred over more detailed methods on
account of its speed arises in the statistical study of composite strength distributions through Monte-Carlo
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simulations (see Mahesh et al., 2002 and references therein). In these studies, one simulates damage evo-
lution in composite specimen containing a few thousand fibers. Stress analysis, which must be repeated at
each incremental damaged state is the slowest step of this computationally intensive procedure, and shear-
lag models are presently the fastest way to execute it.

Shear-lag models for unidirectional composites vary in their degree of complexity. Some models pertain
to single fiber composites, while others apply to multi-fiber composites with various fiber arrangements
(2D, 3D square/hexagonal lattice/random arrangement). The material behavior of the composite constit-
uents, viz., fiber, matrix and interface constitutive laws and loading conditions (monotonic/cyclic,
mechanical/thermal/thermomechanical) also distinguish different shear-lag models.

The first single fiber shear-lag model was developed by Cox (1952). He considered a broken elastic
fiber embedded in an elastic matrix with a perfectly bonded interface and loaded in tension along the
fiber direction. Aveston and Kelly (1973) and Budiansky et al. (1986) extended Cox’s model as a part of
their multi-fiber composite model to the case that the interface may debond and slip if the interfacial
shear stress exceeds a certain threshold. More recently, Cox’s model has been considerably refined by
Hsueh (1990, 1992) for bonded, and debonding interfaces. In Hsueh’s solution, the displacement and
stress fields in the fiber and matrix show both axial and radial variation and exactly satisfy certain
boundary conditions only approximately satisfied by Cox’s solution. The shear-lag model of Hsueh et al.
(1997) includes the effect of thermal residual stresses in a composite with an elastic fiber and matrix and a
bonded interface.

The case of a multi-fiber unidirectional composite tape with stiff elastic fibers embedded in a compliant
elastic matrix and subjected to tension along the fiber direction was first analyzed and solved by Hedgepeth
(1961) in the shear-lag framework. Hedgepeth’s model, applicable best to a polymer matrix composite,
assumes a perfectly bonded interface and a compliant matrix incapable of carrying tensile load. Since this
pioneering work, shear-lag models have been developed for a variety of different fiber—matrix—interface
constitutive combinations, fiber arrangement geometries, and loading conditions. Hedgepeth and Dyke
(1967) extended the model to account for three-dimensional fiber composites in which the fibers are ar-
ranged in a hexagonal or square lattice. Landis and McMeeking (1999), and Beyerlein and Landis (1999)
developed a model for the case of a matrix with non-negligible stiffness and which therefore also carries
tensile load. Lagoudas et al. (1989), and Beyerlein and Phoenix (1998) extended the shear-lag model to the
case of a composite with elastic fibers, viscoelastic matrix and bonded interface.

The present work is motivated by a recent experiment by Hanan et al. (in press). They cyclically loaded
in tension a single Al,O; fiber/Al matrix composite and measured the elastic strain separately in the fiber
and the matrix, using neutron diffraction. The fiber was broken at the mid-point of the composite. Pre-
liminary analysis reported in Hanan et al. suggests that the important damage events in this experiment are
fiber fracture, matrix yielding and strain-hardening, and interfacial debonding. The primary goal of the
present work is to obtain a deeper understanding through modeling, of the damage evolution in this
composite (especially matrix plasticity and interfacial slip evolution) during this experiment. It is assumed
that an elastic fiber is embedded in a ductile linear strain-hardening plastic matrix with non-negligible
tensile stiffness relative to the fiber. Frictional slip, with a prescribed shear threshold is assumed to occur at
the interface. The stress response in the course of one load—unload cycle of axial tension along the fiber
direction is described in Sections 2 and 3. Residual strains are not considered, i.e., further load cycling in the
model does not result in a different stress evolution from the original cycle. Strain predictions of the present
model are compared with measured values in Section 4 for model validation.

Despite its approximate nature, we pursue a shear-lag approach rather than axisymmetric finite element
calculation to interpret the Hanan et al. experiment for two reasons. First, we anticipate numerical diffi-
culties in the finite element calculations due to the concurrence of the crack-tip field, extensive plasticity in a
ductile matrix and interfacial slipping near the fiber fracture. These difficulties, which can be overcome
through sophisticated modeling (see Xia et al., 2001), can be handled elegantly in the shear-lag model as will
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be seen in Sections 2 and 3 below. Nevertheless, such a detailed axisymmetric calculation, left to later work,
would be valuable in further validating the shear-lag model presented here. Second, once developed and
validated, it is a conceptually straightforward task to extend the present single fiber shear-lag model to a
multi-fiber composite. The multi-fiber composite model will be of greater practical use than a corre-
sponding three-dimensional finite element model, as stated at the beginning of this section. Such an
extension is also left to future work.

2. Shear-lag model of monotonic loading
2.1. Geometric and kinematic assumptions

The model composite of length 2¢ consists of a single cylindrical fiber of radius a encased in a cylindrical
matrix of radius b as shown in Fig. 1a and is loaded in tension along the fiber (z) direction. Load is applied
to the matrix at z = +¢. For purposes of modeling, we follow Aveston and Kelly (1973) and Budiansky
et al. (1986), and separate the matrix into distinct parts. We term these the tensile matrix and shear matrix
as shown in Fig. 1b, and assume they are loaded in pure axial stress and pure shear stress, respectively. The
tensile matrix has a cross-sectional area of n(h?> — a?) and is assumed to be situated at radial coordinate
r =R, a < R<b. The two works cited above assign different meanings to the quantity R: Aveston and Kelly
(1973) regard it as the radius where the matrix z-displacement equals the average z-displacement of the
cross-section, while Budiansky et al. (1986) give it an energy interpretation. In the present model, we will
take R = (a + b)/2, since the results are not sensitive to its precise value except when R/a ~ 1. This value
for R corresponds to Aveston and Kelly’s prescription if we assume the matrix z-displacement varies
linearly in a cross-section.

As stated in the introduction, shear-lag models typically treat displacements as one-dimensional fields.
Accordingly, let we(z), and wy,(z) denote the displacement of the fiber and the tensile matrix, respectively.
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Fig. 1. Geometry of the single fiber shear-lag model (after Budiansky et al., 1986). (a) The composite cylinder, (b) the idealized model
composite with the matrix divided into distinct tensile and shear parts, and (c) axial and shear stresses in representative elements of the
fiber, shear matrix and tensile matrix.
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We will assume small displacements throughout. Then, we may define the strain field in the fiber and tensile
matrix respectively as

_ de

(@) = o (2),

thm

&m(z) = & (2).

(1)

Furthermore, the tensile matrix strain field may be separated into elastic and plastic parts,
el 1
8tm(z) = ‘('fm(z) + Sfm(z)7 (2)

and corresponding displacement fields defined as

W (2) = /O & () du,
. (3)
wih(e) = [ e du

Since the fiber is assumed always elastic, such a decomposition is not carried out for its elastostatic fields.
Another displacement field of interest is the slip displacement w,(z) which occurs at the interface between
the fiber and the shear matrix. The slip displacement w,(z) is the relative displacement in the between the
fiber and the shear matrix at their interface as depicted schematically in Fig. 2c.

Let wgy (r, z) be the displacement field in the shear matrix. Then, the shear strain field in the shear matrix
Ysm (7, Z) may be defined as
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Fig. 2. Schematic depicting the notion of the slip displacement w,(z). (a) The fiber, shear matrix and the tensile matrix in the unde-
formed configuration. The tensile matrix is shown with finite width for clarity. A “scratch” along z = constant is also shown as a dotted
line. (b) The displacement of the model composite constituents upon loading with a perfect non-debonding interface shows the
continuity of the “scratch’ across the fiber/shear matrix interface. (¢) When the interface slips however, the scratch becomes dis-
continuous, and the discontinuity as shown is taken as w,(z).
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We immediately note an important relation concerning vy, (r,z):

R R
/a ysm(r,z)dr:/a ag}:m (r,z)dr

= Wsm (R, z) — Wym(a,2)
= th(z) — Wf(Z) - Wx(z)

to be used in Sections 2.3 and 3.2 below. The last equality in Eq. (5) comes from assuming displacement
continuity across the shear/tensile matrix interface, and the discontinuity to the extent w, across the fiber/
shear matrix interface as shown in Fig. 2.

Obviously, all of these stress and displacement fields are also a function of the applied composite stress
0. = f./(nb*) where f, is the axial force applied to the composite. This dependence is however left to be
tacitly assumed for the sake of notational brevity.

()

2.2. Constitutive assumptions

The fiber is assumed to deform linear elastically following the one-dimensional Hooke’s law:
Gf(Z) = Efo(Z), (6)

where E; is the elastic stiffness of the fiber, and oy denotes the fiber stress. On the other hand, the uniaxial
stress—strain (o,—¢,) curve of the matrix in a tension test is approximated as consisting of a linear elastic
part and a linear hardening part. That is,

o - | Ere, if o, < ay®, )
YT\ Eseu + (Ep — E0)eVA, if gy = VA,

where
ey = ay"/Ey, (8)

and ¢{* is the matrix yield stress under uniaxial tension, £ the matrix elastic stiffness, and E, its hardening
rate. Extending an idea of Prager (see Hill, 1950), Eq. (7) can be regularized as

E, — E>)e
Oy = O'YA tanh <(1U—A,2)8u> + Ese,. 9)
Oy
With
o N = 6UA1 - By JE)), (10)

the two branches of Eq. (7) are asymptotic limits of Eq. (9). The differentiability of Eq. (9), not available
in the form Eq. (7) will prove valuable in the numerical solution of the governing equations in Section 2.4
by gradient methods.

Fig. 3 shows the measured uniaxial stress—strain curve for bulk (monolithic) Al 6061 together with the
two branches of Eq. (7) whose parameters £}, £, and agfg are appropriately fit. It is seen that the measured
curve is well approximated by Eq. (7). As can also be seen Eq. (9) is an even better approximation of the
measured stress—strain curve. We emphasize that O'Y denotes the yield point of the monolithic matrix
material, which in general will differ from the yield point on the in situ matrix material in uniaxial tension
denoted by oy*. Typically, oy} <o{* if the composite manufacturing process involves heat treatment
which may yield and harden the matrix.
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E, =70 GPa, £y =5 GPa, U}fﬁ, =93 MPa
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Fig. 3. The bulk (monolithic) stress—strain (ap—¢,) curve of Al 6061 used as the matrix material in the experiment described in Section 4.
The two branches of the bilinear approximation Eq. (7) and the smooth approximation Eq. (9) are also shown.

We next deduce the pure shear stress—strain (7,—y,) response from Eq. (7) using Nadai’s deformation
theory (see Budiansky, 1959) for a matrix material point deforming under pure shear. According to Nadai’s
theory,

Oy
bu = m (11)
in uniaxial tension from which, comparing with Eq. (7) we find for the modulus E;
E, if oo < aVA,
Ey(o.) = gL\ Ey if g, > O'gA‘ (12)

UeEl — GgA(El — Ez) ’

Here o, denotes the equivalent stress. g, = o, in uniaxial tension. In a state of pure shear with shear stress

T4, 6. = V/31,. Also, the yield point in the case of pure shear, rEA is related to the yield point in uniaxial

tension, o* by the von Mises criterion as

A = 6UA /3. (13)
Now, Nadai’s theory, specialized to the case of pure shear gives
3/t Tu Ty
9 = — _—— —_— 14
hu 2<Es E1>+G1’ (14)

where G, is the elastic shear modulus. Since ¢, = v/37, in the case of pure shear, this can be written using
Eq. (12) as

Ty

E, lf Tug'L’SA,

1

W=yt uaf 11 (15)
v - if > UA
G Ty (G2 G1>’ it 7, =197,

11 3/1 1
_ L3 16
G, G1+2(E2 E1> (16)
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denotes the reciprocal hardening of the shear response. Inverting Eq. (15), we obtain in parallel with
Eq. (7),

. G17ys if 7, < tyA, (17)
v GZ’yu =+ (Gl - Gz)VgA» lf Ty 2 TgA»

where
WA = 2UA /Gy (18)
Regularizing this expression exactly as before in Eq. (9), we have
/ G -G
Ty = TgA tanh (%72)'})11> + Gz'}/'u, (19)
Ty

where VA = VA (1 — G,/G)).

We now turn from the uniaxial response of the matrix material either in pure tension, Eq. (9) or pure
shear, Eq. (19) to its in situ response in the composite. In the composite model of Fig. 1a, even assuming
only z-displacements everywhere, matrix material points deform in a combined state of tension and shear. If
the tensile and shear stress at a certain fixed material point are ¢ and 7, then the equivalent stress at that
point is given by v/6? + 372. To similarly couple yielding in both the tensile and shear matrix at each cross-
section of Fig. 1b, we define the equivalent stress at a cross-section z as

0e(z) = \[7hu(2) + 32, (7, 2), (20)

where a < 7 <R denotes a characteristic radial distance representative of the shear stress state in the shear
matrix, and will be defined below in Eq. (44). oy, (z) and 14, (7, z) denote the in situ stress fields in the tensile
and shear matrices respectively. We then take the yield criterion for the cross-section z as

0u(2) = /02 (2) + 322, (7:2) = oY = V3PN, (1)
The value of 6y, (z) and 74, (7, z) which meet this criterion will be labeled as oy (z) and ty(z). For use in the
regularized constitutive laws, we also define

O',Y(Z) :Uy(Z)(l —EQ/EI) and ‘L'/Y(Z) :‘Ey(Z)(l —Gz/Gl) (22)

With this adjustment for the yield point at each cross-section, we assume the in situ response of the tensile
and shear matrix material points to be identical in form to Egs. (9) and (19):

onte) = o2 ({1 E )

and
(Gl - Gz)ysm(nz)
%(2)

Since it will prove convenient for algebraic manipulations later, we also record here the bilinear form of the
approximation Eq. (24):

tan(r,2) = 7 () tanh < ) + Gy (7, 2). (24)

Glysm(raz)v if Tsm < TY(Z)7

G 25
Gysm + (1 —Ez)ry(z), if Ty = Ty (2). (25)
1

Tem(7,2) =

oy(z) and 1y (z) must be calculated using an iterative incremental analysis, in each step of which the matrix
yield zone and the stress field are adjusted until the yield condition c.(z) > o\ is satisfied for z within the
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yield zone and not outside. For simplicity however, we follow the following approximate procedure for
estimating them a priori. Suppose the stress field in the tensile and shear matrices for a linear elastic matrix
and a perfect interface are known to be g,(z) and 1,(r,z) respectively. We assume that

w0l
wG7) ) 2

i.e., the actual stress state at a cross-section on the verge of yielding is the same as it would be if the rest of
the matrix were elastic and the interface perfectly bonded. Qualitatively speaking, the matrix constitutive
assumptions made here will be valid so long as the composite loading is confined to a level such that the
strain in every matrix material point is only a few times the yield strain, and the yielded length of the matrix
is small (comparable to the fiber diameter). Precisely quantifying these limits will take a more detailed
calculation, and is not done here.
Combining Egs. (26) and (21), we then have for each z,
UA UA

oy(z) = oy and 1y(z) = oy . (27)

1+ 3(0(7,2)/0,(2))? V34 (0217, 2))?

Egs. (23) and (24), together with Eq. (27) completely specify the constitutive law of the tension and shear
matrices in situ for each cross-section z provided the elastic fields ¢, and ¢, can be determined.

We next turn to a slipping criterion for the interface. A frequently used model assumes that the interface
slips an indeterminate amount at a certain cross-section z if the shear stress exceeds a frictional threshold t*
at that cross-section z, i.e.,

_fo, if 7;(z) < 1%,
wi(z) = {csign(ri(z)), if 7i(z) =1 »

where ¢ is determined only to the extent that ¢ > 0 and t* defines a frictional slip threshold. In the present
work, we use a regularized form of Eq. (28), viz.,

7i(z) |"
T*

sign(zi(2)). (29)

we(z) = wy

The exponent n determines the rapidity of the stick-to-slip transition. As seen in Fig. 4 the constitutive law
Eq. (29) approaches that expressed by Eq. (28) as n — oo and is a good approximation for even n = 30.
Choosing n much larger than this typically leads to difficulties associated with the floating point repre-
sentation of numbers in computers. z is not a parameter of the present model; it should be chosen to be
large enough so that Eq. (29) well approximates Eq. (28), but not so large as to cause floating point
underflow problems. Also, for a fixed n, the model is unaffected by the individual values of w,, and t* and
only depends upon w,/t*". Anticipating the order of magnitude of w, in Section 4, we take wy = 0.01 mm
and treat 7* as the only parameter to facilitate explanation. Obviously, any arbitrary w,q would do equally
well and the corresponding t* would scale accordingly. The regularized Eq. (29), being differentiable for
|ti(z)| > 0, is amenable to a gradient-based numerical solution scheme for the governing equations below.

2.3. Governing equations

The governing equations of the present problem consist of two differential equations: one expressing
equilibrium of the fiber, and the other the equilibrium of each composite cross-section, and one algebraic
equation expressing the slip condition Eq. (29). In formulating these, we ignore any pre-strains in the
composite.
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Fig. 4. Comparison of the usual (e.g., Budiansky et al., 1986) interfacial slip condition Eq. (28) with the regularized form Eq. (29)
assumed in this work.

Based on the free body diagram for the fiber shown in Fig. 1c, we write the one-dimensional equilibrium
condition for the fiber along the z-direction as follows:

do
na®>— (z) + 2mari(z) = 0, (30)
dz
where na® is the fiber cross-sectional area, 2ma its circumference and 7;(z) is the interfacial shear stress

at coordinate z in the fiber direction. Simplifying, we get
d 2
%(ZHEW) =0. (31)

Since tensile force must be conserved in every z cross-section, and the shear matrix transmits no tension,
we have

%[nazaf(z) + 1(b* — a)om(2)] = 0, (32)
or,
da¢ »* —a* dom

Here, n(h* — a?) is the cross-sectional area of the matrix (Fig. 1a).

We next express the equilibrium equations (31) and (33) in terms of the displacements fields w(z), wim(z)
and w,(z) using the constitutive assumptions for the fiber and matrix materials. For the fiber, we readily
have oy = Erdwg/dz from Eq. (6). Thus,

dO'f d2Wf
— =E—. 4
dz 4z (34)
Differentiating the constitutive law Eq. (23) for the tensile matrix, and using Eq. (1), we also have
ddtm 2 E1 - E2 dwm dzwtm
= h E, —FE Ey | ——(2).
& © (Sec ( a@ & O E T ERITE () (39)

The representation of t;(z) in terms of the displacement fields is somewhat more involved. Solving the
equilibrium equation of the shear matrix,
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0Ty Tom(7,2)
3 (rz) + ———==0 (36)
with the interfacial boundary condition t(r = a,z) = 1;(z), we obtain
Tan(7,2) = a‘cir(z) . (37)
From Eq. (25), we have for the constitutive equation of material points in the shear matrix,
B ari(z) B G]’V,,,(V,Z), G — G if Tsm(;'az) gTY(Z)v o
A =TT 2 G2 + TG, (2) 2 () (38)
1
Integrating both sides from » = a to R, and using Eq. (5), we obtain
I G (W (z) — wr(2) — wi(2)), o if g (7,2) <ty (2),
et () = Galwa@) (@)~ ) + D= P @@ -a), i D) ) P
1
Suppose z* is such that 7y, (7,z*) = 7y (z*), i.e.,
arti(z* .
RN (40)

and the switch occurs from one branch to the other in Eq. (39) at z = z*. z = z* thus is the axial location of
the boundary between the plastic and elastic regions of the matrix. Now, 7; must be a continuous function
of z for equilibrium of the shear matrix at z = z*. This implies the continuity of the right side branches of
Eq. (39), i.e.,

Wi (z°) — we (") — wi (") = 1y (2") (R — a) /G (41)

Condition Eq. (41), together with the equality with first of the branches of Eq. (39)

ati(z)1og(R/a) /Gy = wm(z") — wr(2") — wi(2") (42)
implies
) = TY(E - a)
W) = oa®a) (43)

Comparing Egs. (43) and (40), we find
R—a
r= = - 44
"= loe(®/a) )
It is easily verified that a <7 < R. Setting 7 according to Eq. (44) thus ensures continuity of the right side of
Eq. (39) at the boundary z =z* between the yielded and elastic cross-sections of the matrix defined
according to Eq. (21). We may now rewrite Eq. (39) as

— G n(2) — wi(e) — wilz wER-a)
e a1og(ﬁ/a)( m(2) = wr(2) = wi(2), s alog(R/a) ’ us)
' G2 W 2) — welz) — wo(z G1 — G2 ‘Cy(Z)(E — a) (2 ‘Cy(Z)(R — Cl)
alog(ﬁ/a)( m(2) = wir(2) —wil2) + = alog@®/a) @) alog®/a)
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Regularizing this expression along the same lines as Eq. (9), we finally obtain

L ARER-—a [ GG 9 G
@) alog(R/a) tanh LQ(Z)(R—a)( m(2) = wr(2) =l ))] +a10g(§/a)[ m(2) = we(2) = wil2)-
(46)

Thus, we have expressed all the terms in the equilibrium equations (31) and (33) in terms of displacement
fields. Resubstituting, we can write a pair of governing differential equations:

d2Wf 2‘C/Y(F — a) G1 — Gz ZGZ
— — m — — Wy — = m — Wx| = 0
a2 Ot log®a) L’Y(R — ) Wm(®) —wi() —w (Z))} * Zlog®/a) m ~ il
(47)
obtained using Egs. (46) and (31), and
dPwe B — @ Pwyy 5 (E1 — Ey dwi(2)
E¢ a2 + = iz (2) {sech ( = & >(E1 —E) +E2} =0 (48)

obtained using Egs. (35) and (33). The slip constitutive equation Eq. (29) supplies an algebraic governing
equation:

n

Wxo

_ G — Gy
t*alog(R/a) R

7y (R — a) tanh < -
T

m Sign(fi (Z)) - Wx(z) =0

(Wim — wr — wx)) + Ga(Wim — wr — wy)

(49)

upon substituting 7;(z) from Eq. (46). The three governing equations (47)—(49) in three variables wyy(z),
we(z), and w,(z) must be solved subject to the following four boundary conditions:

de . .
E(Z =0) =0, if the fiber is broken, (50)
wr(z=0) =0, if the fiber is intact,
b2 O¢ bzac
thm bz _ az E_-17 b2 _ a2 ~ GY(6)7
(z=1¥) = 5 5 (51)
dz b Oc 1 1 b*o,
P_-2E \E E ay(f), R > oy (0),
Wm(z =0) =0, (52)
and
dwe _ 2o (53)
dz

Note that the loading boundary condition Eq. (51) prescribes the strain in the matrix at z = £ with reference
to stress a.b?/(b* — a*) which is the local stress in the matrix assuming all the load is applied to it uniformly.
Note also the matrix strain is prescribed depending on whether or not the tensile matrix has yielded at z = ¢.

2.4. Numerical solution
The two differential equations (47), (48) and the one algebraic governing equation (49) are non-linear

and a full analytical solution for them subject to the boundary conditions Egs. (50)—(53) is not possible. The
numerical shooting method (Roberts and Shipman, 1972) becomes unstable when the matrix yields and is
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therefore unsuited for their solution. The finite difference method (Collatz, 1960) however does not suffer
from this deficiency, and is used here. Following this method, we replace the non-linear differential
equations with non-linear algebraic equations by approximating the differential coefficients using the lowest
order central differences, which are then solved. We discretize the domain of the problem 0 <z </ using
nodes z) =1h,1=0,1,2,...,N. We also form two “boundary nodes” at z'="1 = —h, and z("=N*D) = ¢ + h.
Denoting the function values of we(z), wu(z), and w,(z) at z =z also with the superscript (1), the
approximate form of Eq. (47) can be written as

Ly 2K (R — Gi—-G (o _ G
W§1+1) _ 2w§’> + W;’ D4 o _ a) tanh Lz (Win)] - Wls) - W(rl))
Era?log(R/a) (R —a) '

26,k W _ 0 )
2 (W0 0 = 0. 54
+ Ev log(R/a) (th Wp' — W, ) (54)

This approximation will improve with decreasing 4. Similarly, Eq. (48) is approximately

w2y D —(b2 — ) (WUH) — ol 4 w('71)>
f f f Efaz tm tm tm
(1+1) (1—1)
E—FE, wy ' — Wi
x{(E1—E2)sech2< IU,Y 2 7 - >+E2}:0 (55)
and Eq. (49)
xd ) G -G 1 1
S R 7y (R — a) tanh (# (WEn)I —w - Ws)))
*alog(R/a) % (R—a)

n

sign(ti(z)) — wl) = 0. (56)

X

+ G, (WEQ) —w - Wi”)

The finite difference equations (54)—(56) apply for 1 = 0,..., N, i.e., do not apply at the boundary nodes and
thus represent 3N + 3 equations.

The four boundary conditions Egs. (50)—(53) can also be expressed in difference form using the boundary
nodes:

wi) —w™ =0, if the fiber is broken, (57)
w” =0, if the fiber is intact,
bz Oc bzo-c
WD v =2 o <oy(0), -
2h N » o 1 1 0 ba. > oy(0)
b2 — Cl2 Ez Ez E] oY ’ b2 — a2 = oy ’
w =0, (59)
and
wi' T VD = 0. (60)
The 3N + 7 non-linear equations are then solved for as many unknowns: wf-'), w&’r)l, 1=-1,...,N+1, and

wl), 1 =0,...,N using the Newton-Raphson iterative procedure which sets up a banded linear system for
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solution. We calculate the displacement solution in applied stress increments/decrements of Ag. = +1 MPa,
and use the solution obtained at a certain o, as the initial guess for the Newton—Raphson scheme at
g. + Aa.. We pick the rule of mixtures solution (Hanan et al., in press) as the initial guess for 6. = 1 MPa.

3. Shear-lag model of unloading

We now consider the evolution of stresses and displacements in the composite as it is unloaded
monotonically from the maximum stress during the loading half-cycle, g, = o~

3.1. Assumptions

The geometric and kinematic assumptions of Section 2.1 still apply in the unloading model. As in the
loading model, the fiber is assumed to deform linear elastically. However, both the tensile and shear
matrices are assumed to deform linear elastically as well. That is, the equivalent stress which each matrix
material point faces during unloading is assumed to lie inside its yield envelope formed after loading, with
strain-hardening. Thus,

om = Ej (Stm - ggln) and Tsm = G (Vsm - V]sjrln)7 (61)

where & and 7Pl denote, respectively the plastic set at a tensile and shear matrix material point. Both parts
of the matrix are assumed not to yield in reverse, so that the plastic set in each part remains constant during
unloading. Thus &}, (z) and, by Eq. (3) w',(z) remain constant in the tensile matrix. In particular, if ¢ (z)
and &1**(z) denote the stress and strain fields in the tensile matrix when o, = ¢7'**, then

O.max (Z)

eh(2) = e (@) ==

= 62
tm El ( )

As in the loading model (see text after Eq. (5)) the calculation of yP! (r,z) will be unnecessary in the shear-

sm

lag model; only | ) 7P (r,z)dr will be needed, which we will deduce indirectly in Section 3.2 below.
3.2. Governing equations

The differential equations expressing equilibrium of the fiber, tensile matrix, and shear matrix, Egs. (31),
(33) and (36) remain applicable during unloading since they do not depend upon the material constitutive
law. Following the development of Egs. (38)-(46), we now express t;(z) during unloading in terms of the
solution displacement fields. From Eq. (61), we have

Tem(7,2) = &(Z)

= Gi()am(r,2) = ¥i(r,2)). (63)

Integrating both sides from » = a to » = R, and using Egs. (5) and (3),

R R
at;log (5) =Gy (Wi, +wh —wr —wy) — Gy / P dr. (64)

Now, defining the shear matrix plastic displacement as

R
wh,(2) = — / Vo dr, (65)
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we may write

G I I |
T = alog(l_?/a) (me + W?m —Wr— Wy ng)' (66)
This implies that 7; =0, when w¢ +wh —wr —w, = —uP!  ie., the relaxed state of the shear matrix

corresponds to a relatively displaced fiber and tensile matrix. w?! thus quantifies the plastic displacement of
the shear matrix.

As the applied stress is lowered from ¢, = ¢**, we expect continuous variation (with o.) of stress fields
ot(z), oum(z), and 14, (z), for each z. By Egs. (31) and (33), this continuity follows if the interfacial shear
stress, 7;(z) varies continuously with the applied stress g, for all 0 <z < /. The continuity of the interfacial
shear stress field 7;(z) with applied load at g, = o™ furnishes a criterion to determine wF! (z) which remains
constant during the unloading half-cycle. Equating the expressions of Egs. (46) and (66), when o, = o1
we get

‘E/Y(R — a) ( G1 — G2 ) 2
D ———— h - = m - F — X e ———— m - - X
alog(R/a) an (R —a) O = v = ws) ) + alog(R/a) (W = wi = ws)
G ol
= - m — — Y B 67
alog(RJa) " ) 7
or,
G wwv(R—a G -G
whl (2) = (—2 - 1) (W (2) — wi(2) — wi(2)) + YR a) oh (¥ (Wam(2) — wir(2) — wx(z)))
G, G, y(R — a)
(68)
Fiber equilibrium Eq. (31) together with Eq. (66) gives one governing equation during unloading
d2Wf 2G1 1
E - (9 pl _ pl) _
S ZTog(K/a) (Wi, + Wb —wp —wy +wh ) =0 (69)
while the consideration of cross-sectional equilibrium Eq. (33) gives another
d*wy b —a d*we
E¢ iz +E = dzzl =0. (70)

In writing the second term, we have used Egs. (61), (2) and (3). As during loading, a third algebraic
governing equation is obtained from the assumed slip constitutive equation Eq. (28) as
Gy . "
Wao calogR/a) (Wi + Wiy — wr — wo + why )| sign(ti(2)) — wi(2) = 0. (71)
The solution w(z), we (z), and w,(z) for this set of governing equations must be determined subject to
boundary conditions which are identical to those during the loading half-cycle, except that the loading
boundary condition Eq. (51) must now be replaced with

dwe » o
R Sl

(72)

since the matrix is always assumed linear elastic. Numerical solution using the finite difference method of
this set of equations follows the same general scheme as during loading (Section 2.4), and will not be
detailed here.
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4. Experimental verification

As stated at the outset, the present model is motivated by an experiment by Hanan et al. (in press).
Before comparing their measurements to the predictions of the present model, we pause to summarize the
relevant aspects of their experiment. Hanan et al.’s experiment consisted of cyclic tensile loading of an
alumina fiber/aluminum matrix composite with a single embedded fiber. The stress—strain response of the
monolithic matrix material is shown in Fig. 3. The specimen was manufactured by casting the aluminum
6061 alloy around a notched fiber to assure its fracture upon loading. It was considered likely that the in
situ properties of the matrix, especially its yield stress, may have changed during specimen manufacture. An
X-ray radiograph taken at the end of load cycling revealed that the fiber did indeed fracture although the
fracture load could not be experimentally determined. The specimen ends were screwed into the testing
machine, i.e., all the load was applied to the matrix. During the first cycle of loading at room temperature,
the composite was tensioned to ¢{") = 80 MPa. The second and later load cycles consisted of loading to
¢ = 100 MPa and unloading back to 6. = 0 MPa. At load intervals of 20 MPa or smaller during these
cycles, the load was held fixed for about an hour, and the elastic axial strain in the fiber and matrix were
separately measured using neutron diffraction. Hanan et al. observe that the residual strain in the fiber is
tensile and that in the matrix is compressive after each of the cycles. They qualitatively reason this to arise
from matrix plastic deformation during loading. For compatible deformation between fiber and matrix
during the subsequent unloading, they reason that the fiber must counteract some of the matrix plastic

z
O, O,
pegr | ped _
l
45° €+2b
3
— S - r
z Neutron Gage Volume
Q%S Fiber
T Matrix
o, WY
-
='b

Fig. 5. Geometry of both the experimental and model specimen and the neutron gage volume. a and b denote the fiber and composite
radii, respectively, and ¢ its half-length. 2(¢ + b) is the neutron gage length; the beam is inclined at 45° to the longitudinal composite
axis. Stress is applied only to the matrix at z = £/ as shown. See Table 1 for the numerical values of these dimensions.
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strain by compressing it elastically, while the fiber tensile strain itself arises as the reaction to this action.
The present model lends quantitative form and detail to this qualitative argument.

It is important to note that the axial strain measured in each phase was a volume average over the
neutron gage volume depicted in Fig. 5. In order to compare the model predictions with the measured
strain, we must therefore average the axial strain field ¢! (z) calculated by the model over the neutron gage
volume. For this purpose we develop the calculated one-dimensional fields &(z), and ¢! (z) into axisym-
metric fields e (r,z) = &(z), 0<r<a, and € (r,z) = € (z), a <r<b. We then average the fields ¢ and ey
over the volume of the fiber and the matrix probed by the neutron beam to obtain ¢ and € , respectively.
Also, since it is unknown experimentally when the fiber failed, in the model we assume the fiber fractured
prior to any loading at z = 0 mm. This assumption will be borne out shortly by the predictions it yields.
Also, since the present model does not account for residual strains from previous cycles (although it does
calculate residual strains at the end of each cycle), we model cycle 2 as loading the composite directly to
. = 100 MPa. We expect the model load path to reasonably follow the experimental one in the range
oll) <o, < 0P during the loading half of cycle 2 and throughout the subsequent unloading, provided
interfacial slip was limited during cycle 1 unloading. We do not model cycles 3 and above because the
predicted evolution of all stress and displacement fields during these cycles will trivially coincide with those

Cycle 1
80 T
o Measured €;

70 + ’ 1

0L ® Measured €, i
—. 50 F —— Calculated & ]
_ |
£,
é 0r Calculated &, 1
© 30 1

20 1

10 + 1

. .

-600 0 200 400 600 800

&, €, x10°

Fig. 6. Comparison of the predicted fiber and matrix average strains with those measured during cycle 1 of the cyclic tension test
described by Hanan et al. (in press). A 25x 10¢ error bar is shown around each of the experimental points.

Table 1

Constants used in the model
E; 330 GPa T 51 MPa
E, 70 GPa Wyo 0.01 mm
E, 5 GPa a 2.375 mm
G 27 GPa b 4.125 mm
G, 3.2 GPa R 3.25 mm
n 30 l 19 mm
oyA 108 MPa é 3 mm

Only 7%, and ¢{* are fitting parameters which were not measured. The material parameters Er, £, £, were measured on bulk samples
of the fiber and matrix materials (see Hanan et al., in press), G; and G, were deduced therefrom in Section 2.2, and w,y and n were
chosen based on computational considerations. The model specimen dimensions, described by a, b, and ¢ are exactly those of the
experimental specimen, as is also the neutron gage length, 2(¢ + b) (see Fig. 5).
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of cycle 2 as residual strains are ignored by the model. While the experimental data shows evolution of
strains between cycle 2 and cycle 3, cycle 4 onward retrace the same strain evolution as cycle 3 with loading.

Fig. 6 compares the measured average axial strain evolution in the fiber and matrix during cycle 1 with
those calculated using the present model. Two scalar parameters: the in situ yield point ¢y (different from
o4 in Fig. 3; see text below Eq. (10)), and the frictional threshold of the interface t*, are fit so as to obtain
these comparisons. Their values, together with those of other constants of the model are listed in Table 1.
As can be seen, the in situ yield point of the matrix seems to have increased from its bulk value of 93-108
MPa.

The success of the model in capturing the measured strain evolution in cycle 1 with these parameters
suggests that despite the numerous simplifying geometric and constitutive assumptions made, the errors
committed in approximating the elastic strain field in the present one-dimensional model average out over
the neutron gage volume. This, and a similar observation to be made regarding cycle 2 below, a posteriori
justify the use of the shear-lag approach in modeling the stress field in a damaged metal matrix composite.

Several observations follow from the model-data comparisons in Fig. 6 for cycle 1. The excellent
agreement of the model predictions at small ¢, with those experimentally observed suggests that in the
specimen, the fiber fractured at the notch either during specimen manufacture, or at a very small load (say
0. <5 MPa) during cycle 1. As o, is increased to about 35 MPa, the model predictions for both fiber and
matrix strain evolutions show qualitatively different behavior which signals the onset of matrix yielding. It
arises because of the increased compliance of the matrix due to plasticity, which transfers more of the
applied axial stress to the fiber. This transition is missed by the experiment on account of its large load step
size between strain measurements. The agreement of the predicted and measured strains deteriorates
somewhat with increasing load. At o, = 80 MPa, the model overpredicts both & (measured: 350 x 10~¢,
calculated: 410x 107¢) and €! (measured: 590 x 109, calculated: 740 x 10~°). If the model were erring in the
magnitude of load transfer from the matrix to the fiber through interfacial shear, it would underpredict one
of these while overpredicting the other. The observed discrepancy must therefore be due to the discrepancy
between the actual and calculated interfacial shear profiles. During unloading the model accurately
reproduces the slope of the unloading curves near o, = 0 MPa, while overestimating the fiber residual strain
(measured: 170x 107, calculated: 200x107®) and underestimating that in the matrix (measured:
—380x 107°, calculated: —470 x 10~°) unlike the situation at the peak load. This suggests that the model may
not be calculating the actual load transfer from matrix to fiber correctly in this case. The model is also
unable to capture the kink—the curious decrease and followed by a slight increase in fiber strain—at
. = 40 and 20 MPa during unloading.

The deterioration of the model at higher ., and the kink may have several causes among which we are
unable to discriminate with the available information. We however strongly suspect the following two
possibilities: (i) gradual breakdown of the assumed constitutive laws with increasing loading, and (ii)
peculiarity of the interface in this particular specimen. Possibility (i) may take the form of increasing
inapplicability of the frictional criterion Eq. (29) at the interface, especially since the model calculates a
sizable increase in the slip displacement between . = 60 and 80 MPa during loading (w,(z = 0,0, =
60 MPa) = —0.008 mm, w,(z = 0,6, = 80 MPa) = —0.023 mm). Also, the constitutive assumption Eq. (26)
which led to the a priori determined form for the tensile and shear matrix constitutive laws may be
increasingly violated at larger o.. As for possibility (ii), we expect the frictional threshold of the interface t*
to show statistical variation along the interface in reality. If large, this variation can cause the observed
kinks in the measured elastic strain response by significantly perturbing the interfacial shear field. The
extent and significance of this variability can only be known by repeating the experiment with nominally
identical specimens and studying the scatter in the measured strains. Scatter comparable to the observed
kink in this experiment would support the hypothesis that the kinks arise from this variability.

As stated already, the incapacity of the model to accommodate residual strains necessitates that we

model cycle 2 as loading starting from a strain-free composite to ¢ = 100 MPa. In comparing the
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Fig. 7. Comparison of the predicted fiber and matrix average strains with those measured during cycle 2 of the cyclic tension test

described by Hanan et al. (in press). A 25x 107 error bar is shown around each of the experimental points. The sensitivity of the model

to each of the parameters g and t* is also shown by plotting the peak and residual strains calculated by slightly increasing only that
parameter over its value (Table 1) used in the main fit. 6y* is increased from 108 to 118 MPa, and t* from 51 to 56 MPa.

calculated and measured strains during cycle 2 shown in Fig. 7, we must therefore only compare the part of
the loading curve between o. = 80 and 100 MPa, and the entire unloading curve. With the constants of the
model the same as those used in predicting cycle 1, as listed in Table 1, the model predicts very accurately
the peak strain at ¢, = 100 MPa (measured: 430x 107, calculated: 450x 10~%) and residual strain (mea-
sured: 290x107°, calculated: 290x107%) in the fiber and also the residual matrix strain (measured:
—630x 107°, calculated: —650 x 107°). The model peak stress however overestimates the peak matrix strain
(measured: 900 x 107, calculated: 1060 x 10~°). Although capturing the peak and residual strain values the
model and the experiment do not coincide even qualitatively in the interim. Indeed, the experimental data
shows many kinks: Upon unloading from the peak load, the measured fiber strain is lower than its value
during loading at the same o, until about o. = 40 MPa at which point it abruptly starts to increase until
. = 10 MPa and thereafter decreases. In contradistinction, the model predicts a monotonic decrease in
fiber strains upon unloading whose values always exceed the corresponding fiber strain value during
loading. The observed non-monotonicity in the experimental data lends further support to our suggestion
above that the actual interfacial frictional threshold is much more complicated than the constant function
t* assumed and local stick—slip processes are affecting the strain measurements.

Fig. 7 also gives a sense of the sensitivity of the model to the parameters t* and oy* by plotting the peak
and residual strains in cycle 2 calculated with slightly perturbed parameters. The peak and residual strains
hardly change when o{* is increased from 108 to 118 MPa, keeping all other parameters as in Table 1.
Although not shown, this perturbation postpones the widespread matrix yielding hitherto at o, = 35 MPa,
to about ¢, = 38 MPa. The model however is more sensitive to v which governs the load transfer from
matrix to fiber. When increased from 51 to 56 MPa, keeping all other parameters as in Table 1, the peak
fiber strain increases by 23x107°, while that in the matrix decreases by 50x 107°. We caution against
deducing from this observation that t* = 56 MPa represents a better parametric value than t* = 51 MPa
since it misses the measured peak strain in the fiber less than the improvement it brings to the matrix strain.
For, due to the large fiber—matrix stiffness ratio, the discrepancy of 23 x 10~¢ corresponds to a much larger
error in fiber stresses, than the 50 x 10~ improvement does in the matrix. The residual strains are still quite
insensitive to this perturbation.
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Fig. 8. Calculated axial stress profile in the fiber (o¢(z)), tensile matrix (o (2)), and interfacial shear (z;(z)) at the peak load ¢, = 100
MPa.
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Fig. 9. Calculated axial displacement profiles of the fiber (w¢(z)), of the tensile matrix (elastic (wl (z)), plastic (WP (2)) and total
(Wi (2))), and the interfacial slip displacement (w,(z)) at the peak load ¢, = 100 MPa.

We may thus be justified in claiming that statistical variations from specimen to specimen apart, the
present model is a good representation of the average behavior among nominally identical single fiber
alumina/aluminum composite specimens. Given this, the stress and displacement fields predicted by the
model may be regarded as representative of the actual fields in the experimental specimen. We therefore
plot these calculated fields at the two most interesting stages of the experiment in cycle 2: (i) At the peak
load 6. = 100 MPa, in Figs. 8 and 9 and (ii) after unloading to . = 0 MPa from the peak load, in Figs. 10
and 11.

Fig. 8 shows the calculated stress field in the fiber, tensile matrix and interface at g, = 100 MPa. In
keeping with the boundary conditions of the model, the fiber (o¢(z)) and matrix (oy,(z)) axial stress fields
are symmetric about z = ¢/2, while the interfacial shear stress field is anti-symmetric about this point; in
particular 7;(¢/2) = 0. The roundedness of the fiber stress profile seen in this figure suggests incomplete load
transfer from the matrix to the fiber. If repeated with a sufficiently long composite load transfer from the
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Fig. 10. Calculated axial stress profile in the fiber (a¢(z)), tensile matrix (o1, (z)), and interfacial shear (z;(z)) upon unloading to 6. = 0
MPa from a peak load of o, = 100 MPa.
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Fig. 11. Calculated axial displacement profiles of the fiber (wr(z)), of the tensile matrix (elastic (w¢l (z)), plastic (whh(z)) and total
(W (2))), and the interfacial slip displacement (w,(z)) upon unloading to g, = 0 MPa from a peak load of g, = 100 MPa.

matrix to the fiber may be complete, and the slope doy/dz(z = ¢/2) will approach zero. The saturation of
7i(z) near both traction free ends of the fiber at z = 0 and z = ¢ is also seen and indicates slipping in these
regions.

Fig. 10, which corresponds to the unloaded condition of the composite is more complicated than Fig. 8
since the residual fields here are a product of competition between elastic recovery on the one hand and
plastic deformation and slip on the other. The observed profiles are qualitatively best understood by
beginning with 7;(z). As seen, near z = 0 and z = ¢, the interfacial shear stress remains unchanged from the
stress state at the peak load. This is because compatible deformation between the elastic fiber and the
matrix with a large plastic deformation is being imposed by compressing the matrix and tensioning the fiber
elastically. The shear stresses thus imposed near z=0 and z=/¢ set up a strain field which causes
incompatibility at about 3.5 mm from each end, and to enforce compatibility there, a balancing shear stress
of the opposite sense is needed. This stress induces slight reverse slip. As can be seen, the end result of the
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complex stress-transfer across the interface is that matrix is almost entirely in compression and the fiber in
tension at g, = 0.

Figs. 9 and 11 show respectively the calculated displacement field in the composite at o, = 100 MPa, and
after unloading to . = 0 MPa. As can be seen in both figures, wf,L far exceeds the elastic part w¢ , and near
the middle (e.g., 6.5 mm <z < 12.5 mm) the tensile matrix displacement almost coincides with that of the
fiber (does so exactly at z = £/2). When o, = 100 MPa, we observe a crack opening displacement of about
0.048 mm, which is not much diminished upon unloading (0.039 mm). The key difference between the two
cases is that the matrix is in compression at o. = 0, as opposed to the case at . = 100 MPa when it is in
tension.

Finally, as stated below Eq. (29), in fitting the parameters of the model we arbitrarily assumed w,y = 0.01
mm and obtained t* = 51 MPa as the best fit value. From Figs. 9 and 11, we see that the actual slip
displacements are indeed of the order of w,y = 0.01 mm. The physical meaning of t* is directly seen
from Eq. (29): t* represents the interfacial shear stress needed to cause a slip displacement of w,, = 0.01
mm. It can also be readily seen that * = 51 MPa is approximately the saturation value of 7;(z) in Figs. 8
and 10.

5. Conclusions

By accounting for matrix elasto-plasticity and interfacial slip in a metal-matrix composite, the present
shear-lag model succeeds quite well in reproducing the measured strain evolution with applied stress in both
phases of an Al,O3/Al composite. The model is successful in capturing the general trend of the measured
strain evolution while being incapable of capturing the kinks (far larger than experimental error bars)
observed in the strain measurements. It is also seen to perform better predictively in o, < 80 MPa, than
it does at higher stress levels.

The fitting success of the model is undoubtedly determined to a large extent by its assumptions. To
explain its inability to capture the observed kinks in the strain measurements, we hypothesize that they have
their origins in the statistical variation of the frictional threshold along the interface, which if large enough
may cause localized stick—slip relative motions across the interface in regions of marked interfacial
weakness. These may in turn severely perturb the interfacial shear stress profile, and therefore, the mea-
surements. This is contrary to the assumption of a constant frictional threshold of the interface 7* in the
model. This hypothesis may be confirmed by comparing the available measurements with another test on a
nominally identical specimen. Scatter between the two measurements, comparable to the kinks observed
would indicate correctness of the hypothesis. While the present model may be adapted to include large
variations in the strength of the interface, doing so may be uninteresting from a practical standpoint. For,
in a large multi-fiber composite the effect of such variability will likely be averaged out unless it is so strong
as to initiate damage that propagates (Mahesh et al., 2002). As for the deterioration of the model’s pre-
dictions for o, = 80 MPa, we attribute it to the elasto-plastic constitutive model assumed with yielding
criteria for the tensile and shear matrices set a priori. A one-dimensional flow theory (Hill, 1950) based
model of matrix plasticity, which gives a yield criterion, and a flow stress at each composite cross-section, z,
based on the current stress state (g, (z), 7i(z)), may be needed if the errors committed by the present model
are judged excessive for a particular application at the highest load. This modification, which will con-
siderably increase the computational cost of the model, will be needed if the maximum applied load is such
that matrix elements in the composite go far into the plastic regime.

We have attributed the prediction errors of the present model largely to the constitutive assumptions of
its constituents and not so much to its essential one-dimensional character. This assertion represents our
untested intuition, and will require an axisymmetric numerical calculation such as that described in Section
1 for verification. Also as mentioned in Section 1, extension of the ideas presented here to a multi-fiber
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composite model analogous to the extension of the model due to Cox (1952) to Hedgepeth’s (1961)
represents another future goal.
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