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Abstract

We present a shear-lag stress analysis methodology which accounts for both matrix strain-hardening plasticity and

interfacial slip in a single fiber metal matrix composite (MMC) subjected to uniaxial tensile loading and unloading

along the fiber direction. The fiber may either be broken or intact. Among other things, the model predicts residual

stress and strain distribution after a cycle in the fiber and matrix. The development of the model is motivated by the

recent measurement by Hanan et al. [Mater. Sci. Eng. A, in press], of elastic strain evolution with loading in each phase

of an Al2O3/Al composite using neutron diffraction. The model also estimates two crucial in situ material parameters

using these measurements, which cannot be obtained from bulk tests: the frictional threshold of the interface, and the in

situ yield point of the matrix. With these parameters, the predicted elastic strain evolution with loading is in excellent

agreement with the experimental data.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Shear-lag models are often used for fast computational stress analysis of large unidirectional fiber-

reinforced composites with partial damage. The superior computational efficiency of these models relative

to e.g., three-dimensional finite element analysis, stems in part from the simplifying assumption of one-

dimensional displacement and stress fields. Shear-lag models do not provide detailed information about the

spatial variations of stresses and displacement within the composite. Nevertheless, they capture the average

stress field over fiber and matrix cross-sections accurately enough for purposes of material failure

predictions. An application where shear-lag stress analysis is preferred over more detailed methods on
account of its speed arises in the statistical study of composite strength distributions through Monte-Carlo
* Corresponding author. Tel.: +1-505-665-8336; fax: +1-505-665-5926.

E-mail address: mahesh@lanl.gov (S. Mahesh).

0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2004.02.050

mail to: mahesh@lanl.gov


4198 S. Mahesh et al. / International Journal of Solids and Structures 41 (2004) 4197–4218
simulations (see Mahesh et al., 2002 and references therein). In these studies, one simulates damage evo-

lution in composite specimen containing a few thousand fibers. Stress analysis, which must be repeated at

each incremental damaged state is the slowest step of this computationally intensive procedure, and shear-

lag models are presently the fastest way to execute it.
Shear-lag models for unidirectional composites vary in their degree of complexity. Some models pertain

to single fiber composites, while others apply to multi-fiber composites with various fiber arrangements

(2D, 3D square/hexagonal lattice/random arrangement). The material behavior of the composite constit-

uents, viz., fiber, matrix and interface constitutive laws and loading conditions (monotonic/cyclic,

mechanical/thermal/thermomechanical) also distinguish different shear-lag models.

The first single fiber shear-lag model was developed by Cox (1952). He considered a broken elastic

fiber embedded in an elastic matrix with a perfectly bonded interface and loaded in tension along the

fiber direction. Aveston and Kelly (1973) and Budiansky et al. (1986) extended Cox’s model as a part of
their multi-fiber composite model to the case that the interface may debond and slip if the interfacial

shear stress exceeds a certain threshold. More recently, Cox’s model has been considerably refined by

Hsueh (1990, 1992) for bonded, and debonding interfaces. In Hsueh’s solution, the displacement and

stress fields in the fiber and matrix show both axial and radial variation and exactly satisfy certain

boundary conditions only approximately satisfied by Cox’s solution. The shear-lag model of Hsueh et al.

(1997) includes the effect of thermal residual stresses in a composite with an elastic fiber and matrix and a

bonded interface.

The case of a multi-fiber unidirectional composite tape with stiff elastic fibers embedded in a compliant
elastic matrix and subjected to tension along the fiber direction was first analyzed and solved by Hedgepeth

(1961) in the shear-lag framework. Hedgepeth’s model, applicable best to a polymer matrix composite,

assumes a perfectly bonded interface and a compliant matrix incapable of carrying tensile load. Since this

pioneering work, shear-lag models have been developed for a variety of different fiber–matrix–interface

constitutive combinations, fiber arrangement geometries, and loading conditions. Hedgepeth and Dyke

(1967) extended the model to account for three-dimensional fiber composites in which the fibers are ar-

ranged in a hexagonal or square lattice. Landis and McMeeking (1999), and Beyerlein and Landis (1999)

developed a model for the case of a matrix with non-negligible stiffness and which therefore also carries
tensile load. Lagoudas et al. (1989), and Beyerlein and Phoenix (1998) extended the shear-lag model to the

case of a composite with elastic fibers, viscoelastic matrix and bonded interface.

The present work is motivated by a recent experiment by Hanan et al. (in press). They cyclically loaded

in tension a single Al2O3 fiber/Al matrix composite and measured the elastic strain separately in the fiber

and the matrix, using neutron diffraction. The fiber was broken at the mid-point of the composite. Pre-

liminary analysis reported in Hanan et al. suggests that the important damage events in this experiment are

fiber fracture, matrix yielding and strain-hardening, and interfacial debonding. The primary goal of the

present work is to obtain a deeper understanding through modeling, of the damage evolution in this
composite (especially matrix plasticity and interfacial slip evolution) during this experiment. It is assumed

that an elastic fiber is embedded in a ductile linear strain-hardening plastic matrix with non-negligible

tensile stiffness relative to the fiber. Frictional slip, with a prescribed shear threshold is assumed to occur at

the interface. The stress response in the course of one load–unload cycle of axial tension along the fiber

direction is described in Sections 2 and 3. Residual strains are not considered, i.e., further load cycling in the

model does not result in a different stress evolution from the original cycle. Strain predictions of the present

model are compared with measured values in Section 4 for model validation.

Despite its approximate nature, we pursue a shear-lag approach rather than axisymmetric finite element
calculation to interpret the Hanan et al. experiment for two reasons. First, we anticipate numerical diffi-

culties in the finite element calculations due to the concurrence of the crack-tip field, extensive plasticity in a

ductile matrix and interfacial slipping near the fiber fracture. These difficulties, which can be overcome

through sophisticated modeling (see Xia et al., 2001), can be handled elegantly in the shear-lag model as will
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be seen in Sections 2 and 3 below. Nevertheless, such a detailed axisymmetric calculation, left to later work,

would be valuable in further validating the shear-lag model presented here. Second, once developed and

validated, it is a conceptually straightforward task to extend the present single fiber shear-lag model to a

multi-fiber composite. The multi-fiber composite model will be of greater practical use than a corre-
sponding three-dimensional finite element model, as stated at the beginning of this section. Such an

extension is also left to future work.
2. Shear-lag model of monotonic loading

2.1. Geometric and kinematic assumptions

The model composite of length 2‘ consists of a single cylindrical fiber of radius a encased in a cylindrical

matrix of radius b as shown in Fig. 1a and is loaded in tension along the fiber ðzÞ direction. Load is applied

to the matrix at z ¼ �‘. For purposes of modeling, we follow Aveston and Kelly (1973) and Budiansky

et al. (1986), and separate the matrix into distinct parts. We term these the tensile matrix and shear matrix

as shown in Fig. 1b, and assume they are loaded in pure axial stress and pure shear stress, respectively. The

tensile matrix has a cross-sectional area of pðb2 � a2Þ and is assumed to be situated at radial coordinate
r ¼ R, a < R6 b. The two works cited above assign different meanings to the quantity R: Aveston and Kelly

(1973) regard it as the radius where the matrix z-displacement equals the average z-displacement of the

cross-section, while Budiansky et al. (1986) give it an energy interpretation. In the present model, we will

take R ¼ ðaþ bÞ=2, since the results are not sensitive to its precise value except when R=a � 1. This value

for R corresponds to Aveston and Kelly’s prescription if we assume the matrix z-displacement varies

linearly in a cross-section.

As stated in the introduction, shear-lag models typically treat displacements as one-dimensional fields.

Accordingly, let wfðzÞ, and wtmðzÞ denote the displacement of the fiber and the tensile matrix, respectively.
(a) (b) (c)

Fig. 1. Geometry of the single fiber shear-lag model (after Budiansky et al., 1986). (a) The composite cylinder, (b) the idealized model

composite with the matrix divided into distinct tensile and shear parts, and (c) axial and shear stresses in representative elements of the

fiber, shear matrix and tensile matrix.
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We will assume small displacements throughout. Then, we may define the strain field in the fiber and tensile

matrix respectively as
Fig. 2.

formed

line. (

contin

contin
efðzÞ ¼
dwf

dz
ðzÞ;

etmðzÞ ¼
dwtm

dz
ðzÞ:

ð1Þ
Furthermore, the tensile matrix strain field may be separated into elastic and plastic parts,
etmðzÞ ¼ eeltmðzÞ þ epltmðzÞ; ð2Þ
and corresponding displacement fields defined as
wel
tmðzÞ ¼

Z z

0

eeltmðuÞdu;

wpl
tmðzÞ ¼

Z z

0

epltmðuÞdu:
ð3Þ
Since the fiber is assumed always elastic, such a decomposition is not carried out for its elastostatic fields.

Another displacement field of interest is the slip displacement wxðzÞ which occurs at the interface between
the fiber and the shear matrix. The slip displacement wxðzÞ is the relative displacement in the between the

fiber and the shear matrix at their interface as depicted schematically in Fig. 2c.

Let wsmðr; zÞ be the displacement field in the shear matrix. Then, the shear strain field in the shear matrix

csmðr; zÞ may be defined as
csmðr; zÞ ¼
owsm

or
ðr; zÞ: ð4Þ
Schematic depicting the notion of the slip displacement wxðzÞ. (a) The fiber, shear matrix and the tensile matrix in the unde-

configuration. The tensile matrix is shown with finite width for clarity. A ‘‘scratch’’ along z ¼ constant is also shown as a dotted

b) The displacement of the model composite constituents upon loading with a perfect non-debonding interface shows the

uity of the ‘‘scratch’’ across the fiber/shear matrix interface. (c) When the interface slips however, the scratch becomes dis-

uous, and the discontinuity as shown is taken as wxðzÞ.
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We immediately note an important relation concerning csmðr; zÞ:
Z R

a
csmðr; zÞdr ¼

Z R

a

owsm

or
ðr; zÞdr

¼ wsmðR; zÞ � wsmða; zÞ
¼ wtmðzÞ � wfðzÞ � wxðzÞ

ð5Þ
to be used in Sections 2.3 and 3.2 below. The last equality in Eq. (5) comes from assuming displacement

continuity across the shear/tensile matrix interface, and the discontinuity to the extent wx across the fiber/

shear matrix interface as shown in Fig. 2.

Obviously, all of these stress and displacement fields are also a function of the applied composite stress

rc ¼ fc=ðpb2Þ where fc is the axial force applied to the composite. This dependence is however left to be

tacitly assumed for the sake of notational brevity.

2.2. Constitutive assumptions

The fiber is assumed to deform linear elastically following the one-dimensional Hooke’s law:
rfðzÞ ¼ EfefðzÞ; ð6Þ
where Ef is the elastic stiffness of the fiber, and rf denotes the fiber stress. On the other hand, the uniaxial

stress–strain ðru–euÞ curve of the matrix in a tension test is approximated as consisting of a linear elastic
part and a linear hardening part. That is,
ru ¼
E1eu; if ru < rUA

Y ;
E2eu þ ðE1 � E2ÞeUA

Y ; if ru P rUA
Y ;

�
ð7Þ
where
eUA
Y ¼ rUA

Y =E1; ð8Þ
and rUA
Y is the matrix yield stress under uniaxial tension, E1 the matrix elastic stiffness, and E2 its hardening

rate. Extending an idea of Prager (see Hill, 1950), Eq. (7) can be regularized as
ru ¼ rUA0

Y tanh
ðE1 � E2Þeu

rUA0
Y

 !
þ E2eu: ð9Þ
With
rUA0

Y ¼ rUA
Y 1ð � E2=E1Þ; ð10Þ
the two branches of Eq. (7) are asymptotic limits of Eq. (9). The differentiability of Eq. (9), not available

in the form Eq. (7) will prove valuable in the numerical solution of the governing equations in Section 2.4

by gradient methods.

Fig. 3 shows the measured uniaxial stress–strain curve for bulk (monolithic) Al 6061 together with the

two branches of Eq. (7) whose parameters E1, E2 and rUA
Y;b are appropriately fit. It is seen that the measured

curve is well approximated by Eq. (7). As can also be seen, Eq. (9) is an even better approximation of the

measured stress–strain curve. We emphasize that rUA
Y;b denotes the yield point of the monolithic matrix

material, which in general will differ from the yield point on the in situ matrix material in uniaxial tension
denoted by rUA

Y . Typically, rUA
Y;b 6 rUA

Y if the composite manufacturing process involves heat treatment

which may yield and harden the matrix.



Fig. 3. The bulk (monolithic) stress–strain ðrb–ebÞ curve of Al 6061 used as the matrix material in the experiment described in Section 4.

The two branches of the bilinear approximation Eq. (7) and the smooth approximation Eq. (9) are also shown.
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We next deduce the pure shear stress–strain ðsu–cuÞ response from Eq. (7) using Nadai’s deformation

theory (see Budiansky, 1959) for a matrix material point deforming under pure shear. According to Nadai’s
theory,
eu ¼
ru

EsðreÞ
ð11Þ
in uniaxial tension from which, comparing with Eq. (7) we find for the modulus Es
EsðreÞ ¼
E1; if re < rUA

Y ;
reE1E2

reE1 � rUA
Y ðE1 � E2Þ

; if re P rUA
Y :

8<
: ð12Þ
Here re denotes the equivalent stress. re ¼ ru in uniaxial tension. In a state of pure shear with shear stress

su, re ¼
ffiffiffi
3

p
su. Also, the yield point in the case of pure shear, sUA

Y is related to the yield point in uniaxial

tension, rUA
Y by the von Mises criterion as
sUA
Y ¼ rUA

Y =
ffiffiffi
3

p
: ð13Þ
Now, Nadai’s theory, specialized to the case of pure shear gives
cu ¼
3

2

su
Es

�
� su
E1

�
þ su
G1

; ð14Þ
where G1 is the elastic shear modulus. Since re ¼
ffiffiffi
3

p
su in the case of pure shear, this can be written using

Eq. (12) as
cu ¼

su
G1

; if su 6 sUA
Y ;

su
G2

� sUA
Y

1

G2

� 1

G1

� �
; if su P sUA

Y ;

8><
>: ð15Þ
where
1

G2

¼ 1

G1

þ 3

2

1

E2

�
� 1

E1

�
ð16Þ
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denotes the reciprocal hardening of the shear response. Inverting Eq. (15), we obtain in parallel with

Eq. (7),
su ¼
G1cu; if su < sUA

Y ;
G2cu þ ðG1 � G2ÞcUA

Y ; if su P sUA
Y ;

�
ð17Þ
where
cUA
Y ¼ sUA

Y =G1: ð18Þ

Regularizing this expression exactly as before in Eq. (9), we have
su ¼ sUA0

Y tanh
ðG1 � G2Þ

sUA0
Y

cu

 !
þ G2cu; ð19Þ
where sUA0

Y ¼ sUA
Y ð1� G2=G1Þ.

We now turn from the uniaxial response of the matrix material either in pure tension, Eq. (9) or pure

shear, Eq. (19) to its in situ response in the composite. In the composite model of Fig. 1a, even assuming

only z-displacements everywhere, matrix material points deform in a combined state of tension and shear. If

the tensile and shear stress at a certain fixed material point are r̂ and ŝ, then the equivalent stress at that

point is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 þ 3ŝ2

p
. To similarly couple yielding in both the tensile and shear matrix at each cross-

section of Fig. 1b, we define the equivalent stress at a cross-section z as
reðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
tmðzÞ þ 3s2smð~r; zÞ

q
; ð20Þ
where a < ~r6R denotes a characteristic radial distance representative of the shear stress state in the shear
matrix, and will be defined below in Eq. (44). rtmðzÞ and ssmðr; zÞ denote the in situ stress fields in the tensile

and shear matrices respectively. We then take the yield criterion for the cross-section z as
reðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
tmðzÞ þ 3s2smð~r; zÞ

q
¼ rUA

Y ¼
ffiffiffi
3

p
sUA
Y : ð21Þ
The value of rtmðzÞ and ssmð~r; zÞ which meet this criterion will be labeled as rYðzÞ and sYðzÞ. For use in the

regularized constitutive laws, we also define
r0
YðzÞ ¼ rYðzÞð1� E2=E1Þ and s0YðzÞ ¼ sYðzÞð1� G2=G1Þ: ð22Þ
With this adjustment for the yield point at each cross-section, we assume the in situ response of the tensile

and shear matrix material points to be identical in form to Eqs. (9) and (19):
rtmðzÞ ¼ r0
YðzÞ tanh

ðE1 � E2ÞetmðzÞ
r0
YðzÞ

� �
þ E2etmðzÞ ð23Þ
and
ssmðr; zÞ ¼ s0YðzÞ tanh
ðG1 � G2Þcsmðr; zÞ

s0YðzÞ

� �
þ G2csmðr; zÞ: ð24Þ
Since it will prove convenient for algebraic manipulations later, we also record here the bilinear form of the

approximation Eq. (24):
ssmðr; zÞ ¼
G1csmðr; zÞ; if ssm < sYðzÞ;

G2csm þ 1� G2

G1

� �
sYðzÞ; if ssm P sYðzÞ:

8<
: ð25Þ
rYðzÞ and sYðzÞ must be calculated using an iterative incremental analysis, in each step of which the matrix
yield zone and the stress field are adjusted until the yield condition reðzÞP rUA

Y is satisfied for z within the
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yield zone and not outside. For simplicity however, we follow the following approximate procedure for

estimating them a priori. Suppose the stress field in the tensile and shear matrices for a linear elastic matrix

and a perfect interface are known to be rpðzÞ and spðr; zÞ respectively. We assume that
rYðzÞ
sYð~r; zÞ

¼ rpðzÞ
spð~r; zÞ

; ð26Þ
i.e., the actual stress state at a cross-section on the verge of yielding is the same as it would be if the rest of

the matrix were elastic and the interface perfectly bonded. Qualitatively speaking, the matrix constitutive
assumptions made here will be valid so long as the composite loading is confined to a level such that the

strain in every matrix material point is only a few times the yield strain, and the yielded length of the matrix

is small (comparable to the fiber diameter). Precisely quantifying these limits will take a more detailed

calculation, and is not done here.

Combining Eqs. (26) and (21), we then have for each z,
rYðzÞ ¼
rUA
Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3ðspð~r; zÞ=rpðzÞÞ2
q and sYðzÞ ¼

rUA
Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ ðrpðzÞ=spð~r; zÞÞ2
q : ð27Þ
Eqs. (23) and (24), together with Eq. (27) completely specify the constitutive law of the tension and shear

matrices in situ for each cross-section z provided the elastic fields rp and ep can be determined.

We next turn to a slipping criterion for the interface. A frequently used model assumes that the interface
slips an indeterminate amount at a certain cross-section z if the shear stress exceeds a frictional threshold s�

at that cross-section z, i.e.,
wxðzÞ ¼
0; if siðzÞ < s�;
c signðsiðzÞÞ; if siðzÞ ¼ s�;

�
ð28Þ
where c is determined only to the extent that c > 0 and s� defines a frictional slip threshold. In the present

work, we use a regularized form of Eq. (28), viz.,
wxðzÞ ¼ wx0
siðzÞ
s�

����
����
n

signðsiðzÞÞ: ð29Þ
The exponent n determines the rapidity of the stick-to-slip transition. As seen in Fig. 4 the constitutive law

Eq. (29) approaches that expressed by Eq. (28) as n ! 1 and is a good approximation for even n ¼ 30.

Choosing n much larger than this typically leads to difficulties associated with the floating point repre-

sentation of numbers in computers. n is not a parameter of the present model; it should be chosen to be

large enough so that Eq. (29) well approximates Eq. (28), but not so large as to cause floating point
underflow problems. Also, for a fixed n, the model is unaffected by the individual values of wx0 and s� and
only depends upon wx0=s�

n
. Anticipating the order of magnitude of wx in Section 4, we take wx0 ¼ 0:01 mm

and treat s� as the only parameter to facilitate explanation. Obviously, any arbitrary wx0 would do equally

well and the corresponding s� would scale accordingly. The regularized Eq. (29), being differentiable for

jsiðzÞj > 0, is amenable to a gradient-based numerical solution scheme for the governing equations below.

2.3. Governing equations

The governing equations of the present problem consist of two differential equations: one expressing

equilibrium of the fiber, and the other the equilibrium of each composite cross-section, and one algebraic
equation expressing the slip condition Eq. (29). In formulating these, we ignore any pre-strains in the

composite.



Fig. 4. Comparison of the usual (e.g., Budiansky et al., 1986) interfacial slip condition Eq. (28) with the regularized form Eq. (29)

assumed in this work.
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Based on the free body diagram for the fiber shown in Fig. 1c, we write the one-dimensional equilibrium
condition for the fiber along the z-direction as follows:
pa2
drf

dz
ðzÞ þ 2pasiðzÞ ¼ 0; ð30Þ
where pa2 is the fiber cross-sectional area, 2pa its circumference and siðzÞ is the interfacial shear stress

at coordinate z in the fiber direction. Simplifying, we get
drf

dz
ðzÞ þ 2

a
siðzÞ ¼ 0: ð31Þ
Since tensile force must be conserved in every z cross-section, and the shear matrix transmits no tension,

we have
d

dz
½pa2rfðzÞ þ pðb2 � a2ÞrtmðzÞ� ¼ 0; ð32Þ
or,
drf

dz
ðzÞ þ b2 � a2

a2
drtm

dz
ðzÞ ¼ 0: ð33Þ
Here, pðb2 � a2Þ is the cross-sectional area of the matrix (Fig. 1a).
We next express the equilibrium equations (31) and (33) in terms of the displacements fields wfðzÞ, wtmðzÞ

and wxðzÞ using the constitutive assumptions for the fiber and matrix materials. For the fiber, we readily

have rf ¼ Efdwf=dz from Eq. (6). Thus,
drf

dz
¼ Ef

d2wf

dz2
: ð34Þ
Differentiating the constitutive law Eq. (23) for the tensile matrix, and using Eq. (1), we also have
drtm

dz
ðzÞ ¼ sech2 E1 � E2

r0
YðzÞ

dwtm

dz
ðzÞ

� �
ðE1

�
� E2Þ þ E2

�
d2wtm

dz2
ðzÞ: ð35Þ
The representation of siðzÞ in terms of the displacement fields is somewhat more involved. Solving the

equilibrium equation of the shear matrix,
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ossm
or

ðr; zÞ þ ssmðr; zÞ
r

¼ 0 ð36Þ
with the interfacial boundary condition sðr ¼ a; zÞ ¼ siðzÞ, we obtain
ssmðr; zÞ ¼
asiðzÞ
r

: ð37Þ
From Eq. (25), we have for the constitutive equation of material points in the shear matrix,
ssmðr; zÞ ¼
asiðzÞ
r

¼
G1cmðr; zÞ; if ssmð~r; zÞ6 sYðzÞ;
G2cmðr; zÞ þ

G1 � G2

G1

sYðzÞ; if ssmð~r; zÞP sYðzÞ:

8<
: ð38Þ
Integrating both sides from r ¼ a to R, and using Eq. (5), we obtain
asiðzÞ log
R
a

� �
¼

G1ðwtmðzÞ � wfðzÞ � wxðzÞÞ; if ssmð~r; zÞ6 sYðzÞ;
G2ðwtmðzÞ � wfðzÞ � wxðzÞÞ þ

G1 � G2

G1

sYðzÞðR� aÞ; if ssmð~r; zÞP sYðzÞ:

8<
: ð39Þ
Suppose z� is such that ssmð~r; z�Þ ¼ sYðz�Þ, i.e.,

asiðz�Þ

~r
¼ sYðz�Þ ð40Þ
and the switch occurs from one branch to the other in Eq. (39) at z ¼ z�. z ¼ z� thus is the axial location of

the boundary between the plastic and elastic regions of the matrix. Now, si must be a continuous function

of z for equilibrium of the shear matrix at z ¼ z�. This implies the continuity of the right side branches of

Eq. (39), i.e.,
wtmðz�Þ � wfðz�Þ � wxðz�Þ ¼ sYðz�ÞðR� aÞ=G1: ð41Þ
Condition Eq. (41), together with the equality with first of the branches of Eq. (39)
asiðz�Þ logðR=aÞ=G1 ¼ wtmðz�Þ � wfðz�Þ � wxðz�Þ ð42Þ
implies
siðz�Þ ¼
sYðR� aÞ
a logðR=aÞ

: ð43Þ
Comparing Eqs. (43) and (40), we find
~r ¼ R� a

logðR=aÞ
: ð44Þ
It is easily verified that a6~r6R. Setting ~r according to Eq. (44) thus ensures continuity of the right side of

Eq. (39) at the boundary z ¼ z� between the yielded and elastic cross-sections of the matrix defined

according to Eq. (21). We may now rewrite Eq. (39) as
siðzÞ ¼

G1

a logðR=aÞ
ðwtmðzÞ � wfðzÞ � wxðzÞÞ; siðzÞ6

sYðzÞðR� aÞ
a logðR=aÞ

;

G2

a logðR=aÞ
ðwtmðzÞ � wfðzÞ � wxðzÞÞ þ

G1 � G2

G1

sYðzÞðR� aÞ
a logðR=aÞ

; siðzÞP
sYðzÞðR� aÞ
a logðR=aÞ

:

8>>><
>>>:

ð45Þ
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Regularizing this expression along the same lines as Eq. (9), we finally obtain
siðzÞ ¼
s0YðzÞðR� aÞ
a logðR=aÞ

tanh
G1 �G2

s0YðzÞðR� aÞ
ðwtmðzÞ

�
�wfðzÞ �wxðzÞÞ

�
þ G2

a logðR=aÞ
wtmðzÞ½ �wfðzÞ �wxðzÞ�:

ð46Þ

Thus, we have expressed all the terms in the equilibrium equations (31) and (33) in terms of displacement
fields. Resubstituting, we can write a pair of governing differential equations:
Ef

d2wf

dz2
ðzÞ þ 2s0YðR� aÞ

a2 logðR=aÞ
tanh

G1 � G2

s0YðR� aÞ
ðwtmðzÞ

�
� wfðzÞ � wxðzÞÞ

�
þ 2G2

a2 logðR=aÞ
wtm½ � wf � wx� ¼ 0

ð47Þ

obtained using Eqs. (46) and (31), and
Ef

d2wf

dz2
þ b2 � a2

a2
d2wtm

dz2
ðzÞ sech2 E1 � E2

r0
YðzÞ

dwtmðzÞ
dz

� �
ðE1

�
� E2Þ þ E2

�
¼ 0 ð48Þ
obtained using Eqs. (35) and (33). The slip constitutive equation Eq. (29) supplies an algebraic governing

equation:
wx0

s�a logðR=aÞ
s0YðR
���� � aÞ tanh G1 �G2

s0YðR� aÞ
ðwtm

�
�wf �wxÞ

�
þG2ðwtm �wf �wxÞ

����
n

signðsiðzÞÞ �wxðzÞ ¼ 0

ð49Þ

upon substituting siðzÞ from Eq. (46). The three governing equations (47)–(49) in three variables wtmðzÞ,
wfðzÞ, and wxðzÞ must be solved subject to the following four boundary conditions:
dwf

dz
ðz ¼ 0Þ ¼ 0; if the fiber is broken;

wfðz ¼ 0Þ ¼ 0; if the fiber is intact;

8<
: ð50Þ

dwtm

dz
ðz ¼ ‘Þ ¼

b2

b2 � a2
rc

E1

;
b2rc

b2 � a2
6 rYð‘Þ;

b2

b2 � a2
rc

E2

� 1

E2

� 1

E1

� �
rYð‘Þ;

b2rc

b2 � a2
P rYð‘Þ;

8>>><
>>>:

ð51Þ

wtmðz ¼ 0Þ ¼ 0; ð52Þ

and
dwf

dz
ðz ¼ ‘Þ ¼ 0: ð53Þ
Note that the loading boundary condition Eq. (51) prescribes the strain in the matrix at z ¼ ‘ with reference

to stress rcb2=ðb2 � a2Þ which is the local stress in the matrix assuming all the load is applied to it uniformly.

Note also the matrix strain is prescribed depending on whether or not the tensile matrix has yielded at z ¼ ‘.

2.4. Numerical solution

The two differential equations (47), (48) and the one algebraic governing equation (49) are non-linear
and a full analytical solution for them subject to the boundary conditions Eqs. (50)–(53) is not possible. The

numerical shooting method (Roberts and Shipman, 1972) becomes unstable when the matrix yields and is
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therefore unsuited for their solution. The finite difference method (Collatz, 1960) however does not suffer

from this deficiency, and is used here. Following this method, we replace the non-linear differential

equations with non-linear algebraic equations by approximating the differential coefficients using the lowest

order central differences, which are then solved. We discretize the domain of the problem 06 z6 ‘ using
nodes zðiÞ ¼ ih, i ¼ 0; 1; 2; . . . ;N . We also form two ‘‘boundary nodes’’ at zði¼�1Þ ¼ �h, and zði¼Nþ1Þ ¼ ‘þ h.
Denoting the function values of wfðzÞ, wtmðzÞ, and wxðzÞ at z ¼ zðiÞ also with the superscript ðiÞ, the

approximate form of Eq. (47) can be written as
wðiþ1Þ
f � 2wðiÞ

f þ wði�1Þ
f þ 2h2s0YðR� aÞ

Efa2 logðR=aÞ
tanh

G1 � G2

s0YðR� aÞ
wðiÞ

tm

��
� wðiÞ

f � wðiÞ
x

	�

þ 2G2h2

Efa2 logðR=aÞ
wðiÞ

tm

�
� wðiÞ

f � wðiÞ
x

	
¼ 0: ð54Þ
This approximation will improve with decreasing h. Similarly, Eq. (48) is approximately
wðiþ1Þ
f � 2wðiÞ

f þ wði�1Þ
f þ ðb2 � a2Þ

Efa2
wðiþ1Þ

tm

�
� 2wðiÞ

tm þ wði�1Þ
tm

	

� ðE1

(
� E2Þsech2 E1 � E2

r0
Y

wðiþ1Þ
tm � wði�1Þ

tm

2h

 !
þ E2

)
¼ 0 ð55Þ
and Eq. (49)
wx0

s�a logðR=aÞ
s0YðR
���� � aÞ tanh G1 � G2

s0YðR� aÞ
wðiÞ

tm

��
� wðiÞ

f � wðiÞ
x

	�

þ G2 wðiÞ
tm

�
� wðiÞ

f � wðiÞ
x

	����
n

signðsiðzÞÞ � wðiÞ
x ¼ 0: ð56Þ
The finite difference equations (54)–(56) apply for i ¼ 0; . . . ;N , i.e., do not apply at the boundary nodes and
thus represent 3N þ 3 equations.

The four boundary conditions Eqs. (50)–(53) can also be expressed in difference form using the boundary

nodes:
wð1Þ
f � wð�1Þ

f ¼ 0; if the fiber is broken;

wð0Þ
f ¼ 0; if the fiber is intact;

(
ð57Þ

wðNþ1Þ
tm � wðN�1Þ

tm

2h
¼

b2

b2 � a2
rc

E1

;
b2rc

b2 � a2
6 rYð‘Þ;

b2

b2 � a2
rc

E2

� 1

E2

� 1

E1

� �
rYð‘Þ;

b2rc

b2 � a2
P rYð‘Þ;

8>>><
>>>:

ð58Þ

wð0Þ
tm ¼ 0; ð59Þ
and
wðNþ1Þ
f � wðN�1Þ

f ¼ 0: ð60Þ
The 3N þ 7 non-linear equations are then solved for as many unknowns: wðiÞ
f , wðiÞ

tm, i ¼ �1; . . . ;N þ 1, and

wðiÞ
x , i ¼ 0; . . . ;N using the Newton–Raphson iterative procedure which sets up a banded linear system for
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solution. We calculate the displacement solution in applied stress increments/decrements of Drc ¼ �1 MPa,

and use the solution obtained at a certain rc as the initial guess for the Newton–Raphson scheme at

rc þ Drc. We pick the rule of mixtures solution (Hanan et al., in press) as the initial guess for rc ¼ 1 MPa.
3. Shear-lag model of unloading

We now consider the evolution of stresses and displacements in the composite as it is unloaded

monotonically from the maximum stress during the loading half-cycle, rc ¼ rmax
c .

3.1. Assumptions

The geometric and kinematic assumptions of Section 2.1 still apply in the unloading model. As in the

loading model, the fiber is assumed to deform linear elastically. However, both the tensile and shear

matrices are assumed to deform linear elastically as well. That is, the equivalent stress which each matrix

material point faces during unloading is assumed to lie inside its yield envelope formed after loading, with

strain-hardening. Thus,
rtm ¼ E1ðetm � epltmÞ and ssm ¼ G1ðcsm � cplsmÞ; ð61Þ
where epltm and cplsm denote, respectively the plastic set at a tensile and shear matrix material point. Both parts

of the matrix are assumed not to yield in reverse, so that the plastic set in each part remains constant during

unloading. Thus epltmðzÞ and, by Eq. (3) wpl
tmðzÞ remain constant in the tensile matrix. In particular, if rmax

tm ðzÞ
and emax

tm ðzÞ denote the stress and strain fields in the tensile matrix when rc ¼ rmax
c , then
epltmðzÞ ¼ emax
tm ðzÞ � rmax

tm ðzÞ
E1

: ð62Þ
As in the loading model (see text after Eq. (5)) the calculation of cplsmðr; zÞ will be unnecessary in the shear-

lag model; only
R R
a cplsmðr; zÞdr will be needed, which we will deduce indirectly in Section 3.2 below.

3.2. Governing equations

The differential equations expressing equilibrium of the fiber, tensile matrix, and shear matrix, Eqs. (31),

(33) and (36) remain applicable during unloading since they do not depend upon the material constitutive

law. Following the development of Eqs. (38)–(46), we now express siðzÞ during unloading in terms of the

solution displacement fields. From Eq. (61), we have
ssmðr; zÞ ¼
asiðzÞ
r

¼ G1ðcsmðr; zÞ � cplsmðr; zÞÞ: ð63Þ
Integrating both sides from r ¼ a to r ¼ R, and using Eqs. (5) and (3),
asi log
R
a

� �
¼ G1 wel

tm



þ wpl

tm � wf � wx

�
� G1

Z R

a
cplsm dr: ð64Þ
Now, defining the shear matrix plastic displacement as
wpl
smðzÞ ¼ �

Z R

a
cplsm dr; ð65Þ
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we may write
si ¼
G1

a logðR=aÞ
wel

tm



þ wpl

tm � wf � wx þ wpl
sm

�
: ð66Þ
This implies that si ¼ 0, when wel
tm þ wpl

tm � wf � wx ¼ �wpl
sm, i.e., the relaxed state of the shear matrix

corresponds to a relatively displaced fiber and tensile matrix. wpl
sm thus quantifies the plastic displacement of

the shear matrix.

As the applied stress is lowered from rc ¼ rmax
c , we expect continuous variation (with rc) of stress fields

rfðzÞ, rtmðzÞ, and ssmðzÞ, for each z. By Eqs. (31) and (33), this continuity follows if the interfacial shear

stress, siðzÞ varies continuously with the applied stress rc, for all 06 z6 ‘. The continuity of the interfacial

shear stress field siðzÞ with applied load at rc ¼ rmax
c furnishes a criterion to determine wpl

smðzÞ which remains
constant during the unloading half-cycle. Equating the expressions of Eqs. (46) and (66), when rc ¼ rmax

c

we get
s0YðR� aÞ
a logðR=aÞ

tanh
G1 � G2

s0YðR� aÞ
ðwtm

�
� wf � wxÞ

�
þ G2

a logðR=aÞ
wtmð � wf � wxÞ

¼ G1

a logðR=aÞ
wtm



� wf � wx þ wpl

sm

�
; ð67Þ
or,
wpl
smðzÞ ¼

G2

G1

�
� 1

�
ðwtmðzÞ � wfðzÞ � wxðzÞÞ þ

sYðR� aÞ
G1

tanh
G1 � G2

sYðR� aÞ
ðwtmðzÞ

�
� wfðzÞ � wxðzÞÞ

�
:

ð68Þ
Fiber equilibrium Eq. (31) together with Eq. (66) gives one governing equation during unloading
Ef

d2wf

dz2
þ 2G1

a2 logðR=aÞ
wel

tm



þ wpl

tm � wf � wx þ wpl
sm

�
¼ 0 ð69Þ
while the consideration of cross-sectional equilibrium Eq. (33) gives another
Ef

d2wf

dz2
þ E1

b2 � a2

a2
d2wel

tm

dz2
¼ 0: ð70Þ
In writing the second term, we have used Eqs. (61), (2) and (3). As during loading, a third algebraic

governing equation is obtained from the assumed slip constitutive equation Eq. (28) as
wx0
G1

s�a logðR=aÞ
wel

tm


���� þ wpl
tm � wf � wx þ wpl

sm

�����
n

signðsiðzÞÞ � wxðzÞ ¼ 0: ð71Þ
The solution wfðzÞ, wel
tmðzÞ, and wxðzÞ for this set of governing equations must be determined subject to

boundary conditions which are identical to those during the loading half-cycle, except that the loading

boundary condition Eq. (51) must now be replaced with
dwel
tm

dz
ðz ¼ ‘Þ ¼ b2

b2 � a2
rc

E1

; ð72Þ
since the matrix is always assumed linear elastic. Numerical solution using the finite difference method of
this set of equations follows the same general scheme as during loading (Section 2.4), and will not be

detailed here.
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4. Experimental verification

As stated at the outset, the present model is motivated by an experiment by Hanan et al. (in press).

Before comparing their measurements to the predictions of the present model, we pause to summarize the
relevant aspects of their experiment. Hanan et al.’s experiment consisted of cyclic tensile loading of an

alumina fiber/aluminum matrix composite with a single embedded fiber. The stress–strain response of the

monolithic matrix material is shown in Fig. 3. The specimen was manufactured by casting the aluminum

6061 alloy around a notched fiber to assure its fracture upon loading. It was considered likely that the in

situ properties of the matrix, especially its yield stress, may have changed during specimen manufacture. An

X-ray radiograph taken at the end of load cycling revealed that the fiber did indeed fracture although the

fracture load could not be experimentally determined. The specimen ends were screwed into the testing

machine, i.e., all the load was applied to the matrix. During the first cycle of loading at room temperature,
the composite was tensioned to rð1Þ

c ¼ 80 MPa. The second and later load cycles consisted of loading to

rð2Þ
c ¼ 100 MPa and unloading back to rc ¼ 0 MPa. At load intervals of 20 MPa or smaller during these

cycles, the load was held fixed for about an hour, and the elastic axial strain in the fiber and matrix were

separately measured using neutron diffraction. Hanan et al. observe that the residual strain in the fiber is

tensile and that in the matrix is compressive after each of the cycles. They qualitatively reason this to arise

from matrix plastic deformation during loading. For compatible deformation between fiber and matrix

during the subsequent unloading, they reason that the fiber must counteract some of the matrix plastic
Fig. 5. Geometry of both the experimental and model specimen and the neutron gage volume. a and b denote the fiber and composite

radii, respectively, and ‘ its half-length. 2ðnþ bÞ is the neutron gage length; the beam is inclined at 45� to the longitudinal composite

axis. Stress is applied only to the matrix at z ¼ �‘ as shown. See Table 1 for the numerical values of these dimensions.
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strain by compressing it elastically, while the fiber tensile strain itself arises as the reaction to this action.

The present model lends quantitative form and detail to this qualitative argument.

It is important to note that the axial strain measured in each phase was a volume average over the

neutron gage volume depicted in Fig. 5. In order to compare the model predictions with the measured
strain, we must therefore average the axial strain field eeltmðzÞ calculated by the model over the neutron gage

volume. For this purpose we develop the calculated one-dimensional fields efðzÞ, and eeltmðzÞ into axisym-

metric fields �fðr; zÞ ¼ efðzÞ, 06 r6 a, and �eltmðr; zÞ ¼ eeltmðzÞ, a6 r6 b. We then average the fields �f and �tm
over the volume of the fiber and the matrix probed by the neutron beam to obtain ��f and ��eltm, respectively.
Also, since it is unknown experimentally when the fiber failed, in the model we assume the fiber fractured

prior to any loading at z ¼ 0 mm. This assumption will be borne out shortly by the predictions it yields.

Also, since the present model does not account for residual strains from previous cycles (although it does

calculate residual strains at the end of each cycle), we model cycle 2 as loading the composite directly to
rc ¼ 100 MPa. We expect the model load path to reasonably follow the experimental one in the range

rð1Þ
c 6 rc 6rð2Þ

c during the loading half of cycle 2 and throughout the subsequent unloading, provided

interfacial slip was limited during cycle 1 unloading. We do not model cycles 3 and above because the

predicted evolution of all stress and displacement fields during these cycles will trivially coincide with those
Fig. 6. Comparison of the predicted fiber and matrix average strains with those measured during cycle 1 of the cyclic tension test

described by Hanan et al. (in press). A 25 · 10�6 error bar is shown around each of the experimental points.

Table 1

Constants used in the model

Ef 330 GPa s� 51 MPa

E1 70 GPa wx0 0:01 mm

E2 5 GPa a 2:375 mm

G1 27 GPa b 4:125 mm

G2 3:2 GPa R 3:25 mm

n 30 ‘ 19 mm

rUA
Y 108 MPa n 3 mm

Only s�, and rUA
Y are fitting parameters which were not measured. The material parameters Ef , E1, E2 were measured on bulk samples

of the fiber and matrix materials (see Hanan et al., in press), G1 and G2 were deduced therefrom in Section 2.2, and wx0 and n were

chosen based on computational considerations. The model specimen dimensions, described by a, b, and ‘ are exactly those of the

experimental specimen, as is also the neutron gage length, 2ðnþ bÞ (see Fig. 5).
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of cycle 2 as residual strains are ignored by the model. While the experimental data shows evolution of

strains between cycle 2 and cycle 3, cycle 4 onward retrace the same strain evolution as cycle 3 with loading.

Fig. 6 compares the measured average axial strain evolution in the fiber and matrix during cycle 1 with

those calculated using the present model. Two scalar parameters: the in situ yield point rUA
Y (different from

rUA
Y ;b in Fig. 3; see text below Eq. (10)), and the frictional threshold of the interface s�, are fit so as to obtain

these comparisons. Their values, together with those of other constants of the model are listed in Table 1.

As can be seen, the in situ yield point of the matrix seems to have increased from its bulk value of 93–108

MPa.

The success of the model in capturing the measured strain evolution in cycle 1 with these parameters

suggests that despite the numerous simplifying geometric and constitutive assumptions made, the errors

committed in approximating the elastic strain field in the present one-dimensional model average out over

the neutron gage volume. This, and a similar observation to be made regarding cycle 2 below, a posteriori
justify the use of the shear-lag approach in modeling the stress field in a damaged metal matrix composite.

Several observations follow from the model-data comparisons in Fig. 6 for cycle 1. The excellent

agreement of the model predictions at small rc with those experimentally observed suggests that in the

specimen, the fiber fractured at the notch either during specimen manufacture, or at a very small load (say

rc 6 5 MPa) during cycle 1. As rc is increased to about 35 MPa, the model predictions for both fiber and

matrix strain evolutions show qualitatively different behavior which signals the onset of matrix yielding. It

arises because of the increased compliance of the matrix due to plasticity, which transfers more of the

applied axial stress to the fiber. This transition is missed by the experiment on account of its large load step
size between strain measurements. The agreement of the predicted and measured strains deteriorates

somewhat with increasing load. At rc ¼ 80 MPa, the model overpredicts both ��f (measured: 350 · 10�6,

calculated: 410 · 10�6) and ��eltm (measured: 590 · 10�6, calculated: 740 · 10�6). If the model were erring in the

magnitude of load transfer from the matrix to the fiber through interfacial shear, it would underpredict one

of these while overpredicting the other. The observed discrepancy must therefore be due to the discrepancy

between the actual and calculated interfacial shear profiles. During unloading the model accurately

reproduces the slope of the unloading curves near rc ¼ 0 MPa, while overestimating the fiber residual strain

(measured: 170 · 10�6, calculated: 200 · 10�6) and underestimating that in the matrix (measured:
)380 · 10�6, calculated: )470 · 10�6) unlike the situation at the peak load. This suggests that the model may

not be calculating the actual load transfer from matrix to fiber correctly in this case. The model is also

unable to capture the kink––the curious decrease and followed by a slight increase in fiber strain––at

rc ¼ 40 and 20 MPa during unloading.

The deterioration of the model at higher rc, and the kink may have several causes among which we are

unable to discriminate with the available information. We however strongly suspect the following two

possibilities: (i) gradual breakdown of the assumed constitutive laws with increasing loading, and (ii)

peculiarity of the interface in this particular specimen. Possibility (i) may take the form of increasing
inapplicability of the frictional criterion Eq. (29) at the interface, especially since the model calculates a

sizable increase in the slip displacement between rc ¼ 60 and 80 MPa during loading ðwxðz ¼ 0;rc ¼
60 MPaÞ ¼ �0:008 mm, wxðz ¼ 0; rc ¼ 80 MPaÞ ¼ �0:023 mm). Also, the constitutive assumption Eq. (26)

which led to the a priori determined form for the tensile and shear matrix constitutive laws may be

increasingly violated at larger rc. As for possibility (ii), we expect the frictional threshold of the interface s�

to show statistical variation along the interface in reality. If large, this variation can cause the observed

kinks in the measured elastic strain response by significantly perturbing the interfacial shear field. The

extent and significance of this variability can only be known by repeating the experiment with nominally
identical specimens and studying the scatter in the measured strains. Scatter comparable to the observed

kink in this experiment would support the hypothesis that the kinks arise from this variability.

As stated already, the incapacity of the model to accommodate residual strains necessitates that we

model cycle 2 as loading starting from a strain-free composite to rð2Þ
c ¼ 100 MPa. In comparing the



Fig. 7. Comparison of the predicted fiber and matrix average strains with those measured during cycle 2 of the cyclic tension test

described by Hanan et al. (in press). A 25· 10�6 error bar is shown around each of the experimental points. The sensitivity of the model

to each of the parameters rUA
Y and s� is also shown by plotting the peak and residual strains calculated by slightly increasing only that

parameter over its value (Table 1) used in the main fit. rUA
Y is increased from 108 to 118 MPa, and s� from 51 to 56 MPa.
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calculated and measured strains during cycle 2 shown in Fig. 7, we must therefore only compare the part of

the loading curve between rc ¼ 80 and 100 MPa, and the entire unloading curve. With the constants of the
model the same as those used in predicting cycle 1, as listed in Table 1, the model predicts very accurately

the peak strain at rc ¼ 100 MPa (measured: 430 · 10�6, calculated: 450 · 10�6) and residual strain (mea-

sured: 290 · 10�6, calculated: 290 · 10�6) in the fiber and also the residual matrix strain (measured:

)630 · 10�6, calculated: )650 · 10�6). The model peak stress however overestimates the peak matrix strain

(measured: 900 · 10�6, calculated: 1060 · 10�6). Although capturing the peak and residual strain values the

model and the experiment do not coincide even qualitatively in the interim. Indeed, the experimental data

shows many kinks: Upon unloading from the peak load, the measured fiber strain is lower than its value

during loading at the same rc until about rc ¼ 40 MPa at which point it abruptly starts to increase until
rc ¼ 10 MPa and thereafter decreases. In contradistinction, the model predicts a monotonic decrease in

fiber strains upon unloading whose values always exceed the corresponding fiber strain value during

loading. The observed non-monotonicity in the experimental data lends further support to our suggestion

above that the actual interfacial frictional threshold is much more complicated than the constant function

s� assumed and local stick–slip processes are affecting the strain measurements.

Fig. 7 also gives a sense of the sensitivity of the model to the parameters s� and rUA
Y by plotting the peak

and residual strains in cycle 2 calculated with slightly perturbed parameters. The peak and residual strains

hardly change when rUA
Y is increased from 108 to 118 MPa, keeping all other parameters as in Table 1.

Although not shown, this perturbation postpones the widespread matrix yielding hitherto at rc ¼ 35 MPa,

to about rc ¼ 38 MPa. The model however is more sensitive to s� which governs the load transfer from

matrix to fiber. When increased from 51 to 56 MPa, keeping all other parameters as in Table 1, the peak

fiber strain increases by 23 · 10�6, while that in the matrix decreases by 50 · 10�6. We caution against

deducing from this observation that s� ¼ 56 MPa represents a better parametric value than s� ¼ 51 MPa

since it misses the measured peak strain in the fiber less than the improvement it brings to the matrix strain.

For, due to the large fiber–matrix stiffness ratio, the discrepancy of 23 · 10�6 corresponds to a much larger

error in fiber stresses, than the 50 · 10�6 improvement does in the matrix. The residual strains are still quite
insensitive to this perturbation.



Fig. 8. Calculated axial stress profile in the fiber ðrf ðzÞÞ, tensile matrix ðrtmðzÞÞ, and interfacial shear ðsiðzÞÞ at the peak load rc ¼ 100

MPa.

Fig. 9. Calculated axial displacement profiles of the fiber ðwf ðzÞÞ, of the tensile matrix (elastic ðwel
tmðzÞÞ, plastic ðwpl

tmðzÞÞ and total

ðwtmðzÞÞ), and the interfacial slip displacement ðwxðzÞÞ at the peak load rc ¼ 100 MPa.
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We may thus be justified in claiming that statistical variations from specimen to specimen apart, the
present model is a good representation of the average behavior among nominally identical single fiber

alumina/aluminum composite specimens. Given this, the stress and displacement fields predicted by the

model may be regarded as representative of the actual fields in the experimental specimen. We therefore

plot these calculated fields at the two most interesting stages of the experiment in cycle 2: (i) At the peak

load rc ¼ 100 MPa, in Figs. 8 and 9 and (ii) after unloading to rc ¼ 0 MPa from the peak load, in Figs. 10

and 11.

Fig. 8 shows the calculated stress field in the fiber, tensile matrix and interface at rc ¼ 100 MPa. In

keeping with the boundary conditions of the model, the fiber ðrfðzÞÞ and matrix ðrtmðzÞÞ axial stress fields
are symmetric about z ¼ ‘=2, while the interfacial shear stress field is anti-symmetric about this point; in

particular sið‘=2Þ ¼ 0. The roundedness of the fiber stress profile seen in this figure suggests incomplete load

transfer from the matrix to the fiber. If repeated with a sufficiently long composite load transfer from the



Fig. 10. Calculated axial stress profile in the fiber ðrfðzÞÞ, tensile matrix ðrtmðzÞÞ, and interfacial shear ðsiðzÞÞ upon unloading to rc ¼ 0

MPa from a peak load of rc ¼ 100 MPa.

Fig. 11. Calculated axial displacement profiles of the fiber ðwfðzÞÞ, of the tensile matrix (elastic ðwel
tmðzÞÞ, plastic ðwpl

tmðzÞÞ and total

ðwtmðzÞÞ), and the interfacial slip displacement ðwxðzÞÞ upon unloading to rc ¼ 0 MPa from a peak load of rc ¼ 100 MPa.
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matrix to the fiber may be complete, and the slope drf=dzðz ¼ ‘=2Þ will approach zero. The saturation of

siðzÞ near both traction free ends of the fiber at z ¼ 0 and z ¼ ‘ is also seen and indicates slipping in these

regions.
Fig. 10, which corresponds to the unloaded condition of the composite is more complicated than Fig. 8

since the residual fields here are a product of competition between elastic recovery on the one hand and

plastic deformation and slip on the other. The observed profiles are qualitatively best understood by

beginning with siðzÞ. As seen, near z ¼ 0 and z ¼ ‘, the interfacial shear stress remains unchanged from the

stress state at the peak load. This is because compatible deformation between the elastic fiber and the

matrix with a large plastic deformation is being imposed by compressing the matrix and tensioning the fiber

elastically. The shear stresses thus imposed near z ¼ 0 and z ¼ ‘ set up a strain field which causes

incompatibility at about 3.5 mm from each end, and to enforce compatibility there, a balancing shear stress
of the opposite sense is needed. This stress induces slight reverse slip. As can be seen, the end result of the
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complex stress-transfer across the interface is that matrix is almost entirely in compression and the fiber in

tension at rc ¼ 0.

Figs. 9 and 11 show respectively the calculated displacement field in the composite at rc ¼ 100 MPa, and

after unloading to rc ¼ 0 MPa. As can be seen in both figures, wpl
tm far exceeds the elastic part wel

tm, and near
the middle (e.g., 6.5 mm 6 z6 12:5 mm) the tensile matrix displacement almost coincides with that of the

fiber (does so exactly at z ¼ ‘=2). When rc ¼ 100 MPa, we observe a crack opening displacement of about

0.048 mm, which is not much diminished upon unloading (0.039 mm). The key difference between the two

cases is that the matrix is in compression at rc ¼ 0, as opposed to the case at rc ¼ 100 MPa when it is in

tension.

Finally, as stated below Eq. (29), in fitting the parameters of the model we arbitrarily assumed wx0 ¼ 0:01
mm and obtained s� ¼ 51 MPa as the best fit value. From Figs. 9 and 11, we see that the actual slip

displacements are indeed of the order of wx0 ¼ 0:01 mm. The physical meaning of s� is directly seen
from Eq. (29): s� represents the interfacial shear stress needed to cause a slip displacement of wx0 ¼ 0:01
mm. It can also be readily seen that s� ¼ 51 MPa is approximately the saturation value of siðzÞ in Figs. 8

and 10.
5. Conclusions

By accounting for matrix elasto-plasticity and interfacial slip in a metal–matrix composite, the present

shear-lag model succeeds quite well in reproducing the measured strain evolution with applied stress in both

phases of an Al2O3/Al composite. The model is successful in capturing the general trend of the measured

strain evolution while being incapable of capturing the kinks (far larger than experimental error bars)
observed in the strain measurements. It is also seen to perform better predictively in rc < 80 MPa, than

it does at higher stress levels.

The fitting success of the model is undoubtedly determined to a large extent by its assumptions. To

explain its inability to capture the observed kinks in the strain measurements, we hypothesize that they have

their origins in the statistical variation of the frictional threshold along the interface, which if large enough

may cause localized stick–slip relative motions across the interface in regions of marked interfacial

weakness. These may in turn severely perturb the interfacial shear stress profile, and therefore, the mea-

surements. This is contrary to the assumption of a constant frictional threshold of the interface s� in the
model. This hypothesis may be confirmed by comparing the available measurements with another test on a

nominally identical specimen. Scatter between the two measurements, comparable to the kinks observed

would indicate correctness of the hypothesis. While the present model may be adapted to include large

variations in the strength of the interface, doing so may be uninteresting from a practical standpoint. For,

in a large multi-fiber composite the effect of such variability will likely be averaged out unless it is so strong

as to initiate damage that propagates (Mahesh et al., 2002). As for the deterioration of the model’s pre-

dictions for rc P 80 MPa, we attribute it to the elasto-plastic constitutive model assumed with yielding

criteria for the tensile and shear matrices set a priori. A one-dimensional flow theory (Hill, 1950) based
model of matrix plasticity, which gives a yield criterion, and a flow stress at each composite cross-section, z,
based on the current stress state ðrtmðzÞ; siðzÞÞ, may be needed if the errors committed by the present model

are judged excessive for a particular application at the highest load. This modification, which will con-

siderably increase the computational cost of the model, will be needed if the maximum applied load is such

that matrix elements in the composite go far into the plastic regime.

We have attributed the prediction errors of the present model largely to the constitutive assumptions of

its constituents and not so much to its essential one-dimensional character. This assertion represents our

untested intuition, and will require an axisymmetric numerical calculation such as that described in Section
1 for verification. Also as mentioned in Section 1, extension of the ideas presented here to a multi-fiber
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composite model analogous to the extension of the model due to Cox (1952) to Hedgepeth’s (1961)

represents another future goal.
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